Question 1 Report
If 251−x×5x+2÷(1125)x=625−1 25 1 − x × 5 x + 2 ÷ ( 1 125 ) x = 625 − 1 , find the value of x.
Answer Details
251−x×5x+2÷(1125)x=625−1 25 1 − x × 5 x + 2 ÷ ( 1 125 ) x = 625 − 1 (52)(1−x)×5(x+2)÷(5−3)x=(54)−1 ( 5 2 ) ( 1 − x ) × 5 ( x + 2 ) ÷ ( 5 − 3 ) x = ( 5 4 ) − 1 52−2x×5x+2÷5−3x=5−4 5 2 − 2 x × 5 x + 2 ÷ 5 − 3 x = 5 − 4 5(2−2x)+(x+2)−(−3x)=5−4 5 ( 2 − 2 x ) + ( x + 2 ) − ( − 3 x ) = 5 − 4 Equating bases, we have 2−2x+x+2+3x=−4 2 − 2 x + x + 2 + 3 x = − 4 4+2x=−4⟹2x=−4−4 4 + 2 x = − 4 ⟹ 2 x = − 4 − 4 2x=−8 2 x = − 8 x=−4