Evaluate \((111_{two})^2\) and leave your answer in base 2
Answer Details
To solve this question, we need to convert the number 111 from binary to decimal, then square the result and convert the answer back to binary. Starting with the binary number 111, we can convert it to decimal using the place value system. The rightmost digit represents 1, the second digit from the right represents 2, and the leftmost digit represents 4. Adding these values together, we get: 1 + 2 + 4 = 7 So 111 in binary is equal to 7 in decimal. To square 7, we simply multiply it by itself: 7 x 7 = 49 So the decimal equivalent of (111two)2 is 49. To convert this back to binary, we use the same place value system but in reverse. Starting with the largest power of 2 that is less than or equal to 49, we subtract that value and place a 1 in the corresponding digit. We then repeat this process with the remainder until we reach 0. 49 is greater than or equal to 32, so we subtract 32 and place a 1 in the 6th digit from the right. The remainder is 17. 17 is greater than or equal to 16, so we subtract 16 and place a 1 in the 5th digit from the right. The remainder is 1. 1 is less than 2, so we place a 1 in the 1st digit from the right. The remainder is 0, so we have our final answer: 49 in binary is equal to 110001two Therefore, the correct answer is (b) 110001two.