in the diagram, angle 20o is subtended at the centre of the circle, find the value of x
Answer Details
In the given diagram, we have a circle with center O and angle 20o subtended at the center. We need to find the value of x. Firstly, we know that the angle subtended at the center of a circle is twice the angle subtended at the circumference by the same arc. Therefore, angle AOB = 2 × 20o = 40o Also, we know that angle in a semicircle is a right angle. So, angle AOC = 90o. Using the fact that the angles in a triangle add up to 180o, we can find angle BOC as follows: angle BOC = 180o - angle AOB - angle AOC = 180o - 40o - 90o = 50o Since angle BOC is an angle at the circumference that subtends the arc BC, which is equal to x degrees, we have: x = angle BOC = 50o Therefore, the value of x is 50o. Answer is correct.