The perpendicular bisectors of the sides of an acute-angled triangle are drawn. Which of these statements is correct? They intersect
Answer Details
The perpendicular bisectors of the sides of an acute-angled triangle intersect at a point inside the triangle. This point is called the circumcenter, which is equidistant from the three vertices of the triangle. To see why this is true, consider two sides of the triangle, and let their perpendicular bisectors intersect at a point O. Since O lies on the perpendicular bisector of each of the two sides, it is equidistant from the endpoints of each of those sides. Therefore, O is equidistant from two vertices of the triangle. Similarly, O is equidistant from the third vertex, so it must be the circumcenter of the triangle. Since the triangle is acute-angled, the circumcenter lies inside the triangle.