From the equation whose roots are x = \(\frac{1}{2}\) and -\(\frac{2}{3}\)
Answer Details
When a quadratic equation has roots at x = a and x = b, it can be written in factored form as (x-a)(x-b) = 0. Therefore, from the given roots, the factors are (x - \(\frac{1}{2}\)) and (x + \(\frac{2}{3}\)). To get the quadratic equation, we can expand the factors by multiplying them together, which gives us: (x - \(\frac{1}{2}\))(x + \(\frac{2}{3}\)) = x2 - \(\frac{1}{2}\)x + \(\frac{2}{3}\)x - \(\frac{1}{2}\)\(\frac{2}{3}\) = x2 + \(\frac{1}{6}\)x - \(\frac{1}{3}\) Therefore, the correct option is 6x2 + x - 2 = 0.