State three observable phenomena in which waves behave like a particle.
The phenomena in which waves behave like a particle are collectively known as wave-particle duality. Here are three observable phenomena that demonstrate this concept:
Photoelectric effect: When light is shone on a metal surface, electrons are emitted from the surface. This can be explained by the idea that light behaves as a stream of particles called photons. These photons collide with the electrons in the metal, causing them to be ejected from the surface.
Compton scattering: When X-rays are scattered off a material, the wavelength of the scattered X-rays is longer than the incident X-rays. This can be explained by the idea that X-rays behave like particles, and when they collide with electrons in the material, they transfer some of their energy to the electrons, causing the X-rays to lose energy and their wavelength to increase.
Electron diffraction: When a beam of electrons is passed through a crystal, it produces a diffraction pattern that is similar to the pattern produced by a beam of light passing through a diffraction grating. This can be explained by the idea that electrons behave like waves, and their wavelength is related to their momentum. The crystal acts as a diffraction grating, causing the electrons to diffract and interfere with each other, producing the characteristic pattern.
The phenomena in which waves behave like a particle are collectively known as wave-particle duality. Here are three observable phenomena that demonstrate this concept:
Photoelectric effect: When light is shone on a metal surface, electrons are emitted from the surface. This can be explained by the idea that light behaves as a stream of particles called photons. These photons collide with the electrons in the metal, causing them to be ejected from the surface.
Compton scattering: When X-rays are scattered off a material, the wavelength of the scattered X-rays is longer than the incident X-rays. This can be explained by the idea that X-rays behave like particles, and when they collide with electrons in the material, they transfer some of their energy to the electrons, causing the X-rays to lose energy and their wavelength to increase.
Electron diffraction: When a beam of electrons is passed through a crystal, it produces a diffraction pattern that is similar to the pattern produced by a beam of light passing through a diffraction grating. This can be explained by the idea that electrons behave like waves, and their wavelength is related to their momentum. The crystal acts as a diffraction grating, causing the electrons to diffract and interfere with each other, producing the characteristic pattern.