To determine how many moles of carbon dioxide (CO2) are produced when ethanol is burnt with 6g of oxygen, we need to understand the balanced chemical equation for the combustion of ethanol. The reaction is as follows:
C2H5OH + 3O2 → 2CO2 + 3H2O
This equation tells us that 1 mole of ethanol (C2H5OH) reacts with 3 moles of oxygen (O2) to produce 2 moles of carbon dioxide (CO2).
First, let's calculate how many moles of oxygen 6 g represents. The molecular weight of oxygen (O2) is approximately 32 g/mol. Therefore, the number of moles of oxygen is:
Number of moles of O2 = 6 g / 32 g/mol = 0.1875 moles
According to the balanced equation, 3 moles of O2 produce 2 moles of CO2. Hence, the relationship between moles of O2 and moles of CO2 is:
2 moles of CO2 / 3 moles of O2 = x moles of CO2 / 0.1875 moles of O2
Solving for x, we have:
x = (2/3) * 0.1875 = 0.125
Therefore, 0.125 moles of CO2 are produced when 6g of oxygen is used to burn ethanol.