The suitable method for the separation of gases present in air is the fractional distillation of liquid air. This method is used due to the differing boiling points of the gases present in the air. Let me explain this in simple terms:
Air is a mixture of different gases, primarily nitrogen, oxygen, and argon, along with small amounts of other gases like carbon dioxide, neon, and krypton. Each of these gases turns into a liquid at different temperatures.
The process begins by cooling the air until it becomes a liquid. This is done at very low temperatures (around -200 degrees Celsius). Once the air is in liquid form, it is slowly warmed up in a distillation column. As it heats up, each gas boils off or evaporates at its respective boiling point and can be collected separately.
For example, nitrogen, which has a boiling point of about -196 degrees Celsius, will evaporate first and can be collected at the top of the distillation column. Following nitrogen, oxygen will evaporate at its boiling point of around -183 degrees Celsius. Finally, argon and other gases will do so at their respective temperatures.
In summary, fractional distillation of liquid air is effective because it takes advantage of the different boiling points to separate each gas from the air mixture.