The question is asking about the pH of a 0.001 mol dm−3 solution of H2SO4 (sulfuric acid). To find the pH, we need to understand how sulfuric acid dissociates in water.
Step 1: Dissociation of H2SO4
Sulfuric acid, H2SO4, is a strong acid and dissociates completely in water in two steps:
1. The first dissociation: H2SO4 → H+ + HSO4-
2. The second dissociation: HSO4- → H+ + SO42-
For dilute solutions, particularly below 0.1 M, the first dissociation provides the major contribution to the H+ concentration. The second dissociation also contributes slightly to the acidity, but for simplicity and due to the dilute nature of this solution, the first step's contribution is primarily considered.
Step 2: Calculate the H+ Concentration
Since this is a strong acid and dissociates completely, for every 1 mole of H2SO4, we get 2 moles of H+. Therefore, for a 0.001 mol dm−3 solution of H2SO4, the concentration of H+ ions will be:
2 x 0.001 = 0.002 mol dm−3
Step 3: Calculate the pH
The pH is calculated using the formula: pH = -log[H+]
Substitute the H+ concentration:
pH = -log(0.002)
We know that log(10-2) = -2 and log(2) = 0.3 (as provided), so:
pH = -(log(2) + log(10-3))
pH = -(0.3 - 3)
pH = 3 - 0.3
pH = 2.7
Therefore, the pH of the 0.001 mol dm−3 H2SO4 solution is 2.7.