Calculate the number of moles of Copper that will be deposited, if 2 Faraday of electricity is passed through the copper during the electrolysis of copper(I...
Calculate the number of moles of Copper that will be deposited, if 2 Faraday of electricity is passed through the copper during the electrolysis of copper(II)tetraoxosulphate(VI)
[1F = 96500C ]
Answer Details
The electrolysis of copper(II) tetraoxosulphate(VI) involves the deposition of copper at the cathode. To understand how many moles of copper are deposited when 2 Faraday of electricity is passed through, we need to consider Faraday's first law of electrolysis. Faraday's first law states that the mass (or number of moles) of a substance deposited at an electrode is directly proportional to the quantity of electricity that is passed through the electrolyte.
A Faraday (or Faraday constant) is the charge of one mole of electrons, which is approximately **96500 coulombs** (C). During electrolysis, the chemical reaction occurring at the cathode for copper deposition can be represented by the following equation:
Cu2+ + 2e- → Cu
This equation shows that **2 moles of electrons** (represented by 2e-) are needed to deposit **1 mole of copper (Cu)**.
If we have **2 Faradays** of electricity, it means we have **2 x 96500 C = 193000 C**. Since **1 Faraday (96500 C)** is required to deposit **0.5 mole** of copper, **2 Faradays** will deposit twice that amount:
0.5 mole of copper deposited per Faraday x 2 Faradays = **1.0 mole** of copper
Thus, when **2 Faradays** of electricity are passed through copper(II) tetraoxosulphate(VI) solution, **1.0 mole** of copper will be deposited.