We can use the logarithmic identities to simplify the given equation: log8x - 4log8x = log8(x) - log8(x^4) = log8(x / x^4) = log8(1/x^3) Substituting this into the original equation, we have: log8(1/x^3) = 2 Rewriting in exponential form, we have: 8^2 = 1/x^3 Simplifying this expression, we get: 64 = 1/x^3 x^3 = 1/64 Taking the cube root of both sides, we get: x = 1/4 Therefore, the solution to the equation is x = 1/4. Answer: 1/4.