Question 1 Report
PQRS is a cyclic quadrilateral. Find x + y
Answer Details
∠PQR + ∠PSR = 180o (opp. angles of cyclic quad. are supplementary)⇒ 5x - y + 10 + (-2x + 3y + 145) = 180⇒ 5x - y + 10 - 2x + 3y + 145 = 180⇒ 3x + 2y + 155 = 180⇒ 3x + 2y = 180 - 155⇒ 3x + 2y = 25 ----- (i)∠QPS + ∠QRS = 180o (opp. angles of cyclic quad. are supplementary)⇒ -4x - 7y + 150 + (2x + 8y + 105) = 180⇒ -4x - 7y + 75 + 2x� + 8y + 180 = 180⇒ -2x + y + 255 = 180⇒ -2x + y = 180 - 255⇒ -2x + y = -75 ------- (ii)⇒ y = -75 + 2x -------- (iii)Substitute (-75 + 2x ) for y in equation (i)
⇒ 3x + 2(-75 + 2x ) = 25⇒ 3x - 150 + 4x = 25⇒ 7x = 25 + 150⇒ 7x = 175
⇒ x=1757=25 = 175 7 = 25
From equation (iii)⇒ y = -75 + 2(25) = -75 + 50⇒ y = -25∴ x + y = 25 + (-25) = 0