The polynomial \(2x^{3} + x^{2} - 3x + p\) has a remainder of 20 when divided by (x - 2). Find the value of constant p.
Answer Details
The problem tells us that when we divide the polynomial \(2x^{3} + x^{2} - 3x + p\) by \((x - 2)\), the remainder is 20. We can use polynomial long division to find the quotient and remainder.
\begin{array}{c|ccccc}
\multicolumn{2}{r}{2x^2} & 5x & 7 \\
\cline{2-6}
x-2 & 2x^3 & x^2 & -3x & +p & \\
\multicolumn{2}{r}{-2x^3} & +4x^2 & & &\\
\cline{2-3}
\multicolumn{2}{r}{0} & 5x^2 & -3x & &\\
\multicolumn{2}{r}{} & -5x^2 & +10x & &\\
\cline{3-4}
\multicolumn{2}{r}{} & 0 & 7x & +p & \\
\multicolumn{2}{r}{} & & -7x & +14 & \\
\cline{4-5}
\multicolumn{2}{r}{} & & 0 & p+14 & \\
\end{array}
The quotient is \(2x^{2} + 5x + 7\), and the remainder is \(p + 14\). We know that the remainder is equal to 20, so we can set up the equation:
\[p + 14 = 20.\]
Solving for \(p\), we get:
\[p = 20 - 14 = 6.\]
Therefore, the value of the constant \(p\) is 6, which is option (B).