To find the product of matrices P and Q, we need to multiply the rows of the first matrix with the columns of the second matrix.
Multiplying the first row of matrix P with the first column of matrix Q gives:
\begin{pmatrix} 1 & -2 \end{pmatrix}\begin{pmatrix} -2 \\ 1 \end{pmatrix} = (-2\times 1) + (-2\times 1) = -4
Multiplying the first row of matrix P with the second column of matrix Q gives:
\begin{pmatrix} 1 & -2 \end{pmatrix}\begin{pmatrix} 3 \\ 0 \end{pmatrix} = (1\times 3) + (-2\times 0) = 3
Similarly, multiplying the second row of matrix P with the first and second columns of matrix Q gives:
\begin{pmatrix} 3 & 4 \end{pmatrix}\begin{pmatrix} -2 \\ 1 \end{pmatrix} = (-6) + 4 = -2
\begin{pmatrix} 3 & 4 \end{pmatrix}\begin{pmatrix} 3 \\ 0 \end{pmatrix} = 9 + 0 = 9
Hence, the product of matrices P and Q is:
PQ = \(\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}\)\(\begin{pmatrix} -2 & 3 \\ 1 & 0 \end{pmatrix}\) = \(\begin{pmatrix} -4 & 3 \\ -2 & 9 \end{pmatrix}\)
Therefore, the answer is option D: \(\begin{pmatrix} -4 & 3 \\ -2 & 9 \end{pmatrix}\).