Lenz's law of electromagnetic induction states that
Answer Details
Lenz's law of electromagnetic induction states that "the induced current in a coil is in such a direction that it sets up a magnetic field which opposes the change producing it."
When a magnetic field is applied to a conductor, it produces an electromotive force (EMF) that induces a current in the conductor. According to Lenz's law, the direction of the induced current is such that it creates a magnetic field that opposes the change in the original magnetic field. This means that the induced magnetic field tries to cancel out the original magnetic field.
For example, if a magnet is moved towards a coil, the change in magnetic field will induce a current in the coil. According to Lenz's law, the induced current will produce a magnetic field that opposes the motion of the magnet towards the coil. This opposing force is what is responsible for the "drag" that is observed when a magnet is moved towards a coil.
In essence, Lenz's law is a manifestation of the law of conservation of energy. The induced current and magnetic field oppose the change in the original magnetic field, which in turn results in the dissipation of some of the energy that was used to produce the original magnetic field.