If the volume of a hemisphere is increasing at a steady rate of 18π m/s, at what rate is its radius changing when its is 6m?
Answer Details
We can solve this problem using the formula for the volume of a hemisphere, which is given by V = (2/3)πr^3. To find the rate of change of the radius, we need to differentiate this equation with respect to time t. Thus, we have: dV/dt = (2/3)π(3r^2)(dr/dt) where dV/dt is the rate of change of volume (18π m/s), and r = 6 m is the radius of the hemisphere. Solving for dr/dt, we get: dr/dt = (3dV/dt)/(4πr^2) = (3(18π))/(4π(6)^2) = 0.25 m/s Therefore, the rate of change of the radius when the volume of the hemisphere is increasing at a steady rate of 18π m/s and its radius is 6 m is 0.25 m/s. Thus, the correct option is: 0.25 m/s.