Question 1 Report
Find the equation of the perpendicular bisector of the line joining P(2, -3) to Q(-5, 1)
Answer Details
Given P(2, -3) and Q(-5, 1)
Midpoint = (2+(−5)2,−3+12) ( 2 + ( − 5 ) 2 , − 3 + 1 2 )
= (−32,−1) ( − 3 2 , − 1 )
Slope of the line PQ = 1−(−3)−5−2 1 − ( − 3 ) − 5 − 2
= −47 − 4 7
The slope of the perpendicular line to PQ = −1−47 − 1 − 4 7
= 74 7 4
The equation of the perpendicular line: y=74x+b y = 7 4 x + b
Using a point on the line (in this case, the midpoint) to find the value of b (the intercept).
−1=(74)(−32)+b − 1 = ( 7 4 ) ( − 3 2 ) + b
−1+218=138=b − 1 + 21 8 = 13 8 = b
∴ ∴ The equation of the perpendicular bisector of the line PQ is y=74x+138 y = 7 4 x + 13 8
≡8y=14x+13⟹8y−14x−13=0