Question 1 Report
If y = x sin x, find δyδx
Answer Details
y = x sin x Where u = x and v = sin x Then δuδx δ u δ x = 1 and δvδx δ v δ x = cos x By the chain rule, δyδx=vδuδx+uδvδx δ y δ x = v δ u δ x + u δ v δ x = (sin x)1 + x cos x = sin x + x cos x