Question 1 Report
If S = √t2−4t+4 t 2 − 4 t + 4 , find t in terms of S
Answer Details
S = √t2−4t+4 t 2 − 4 t + 4 S2 = t2 - 4t + 4 t2 - 4t + 4 - S2 = 0 Using t=−b±√b2−4ac2a t = − b ± b 2 − 4 a c 2 a Substituting, we have; Using t=−(−4)±√(−4)2−4(1)(4−S2)2(1) t = − ( − 4 ) ± ( − 4 ) 2 − 4 ( 1 ) ( 4 − S 2 ) 2 ( 1 ) t=4±√16−4(4−S2)2 t = 4 ± 16 − 4 ( 4 − S 2 ) 2 t=4±√16−16+4S22 t = 4 ± 16 − 16 + 4 S 2 2 t=4±√4S22 t = 4 ± 4 S 2 2 t=2(2±S)2 t = 2 ( 2 ± S ) 2 Hence t = 2 + S or t = 2 - S