(a} In the diagram, O is the centre of the circle ABCDE, = I\(\overline{BC}\)I = |\(\overline{CD}\)| and < BCD = 108°. Find < CDE. (b) Given that tan x = \(...

Question 1 Report


(a} In the diagram, O is the centre of the circle ABCDE, = I\(\overline{BC}\)I = |\(\overline{CD}\)| and < BCD = 108°. Find < CDE. 

(b) Given that tan x = \(\sqrt{3}\), 0\(^o\) \(\geq\) x \(\geq\) 90\(^o\), evaluate 

\(\frac{(cos x)^2 - sin x}{(sin x)^2 + cos x}\)