To find a polynomial with the given zeros, we can use the fact that the product of the factors (x+2), (x+1), and (x-3) will give us the desired polynomial.
Multiplying out these factors, we get:
(x+2)(x+1)(x-3) = (x^2 + 3x + 2)(x-3)
= x^3 - 9x^2 - x + 18
Therefore, the polynomial that has zeros of -2, -1, and 3 is x^3 - 7x - 6.