In an electrochemical cell, polarization is caused by
Answer Details
In an electrochemical cell, polarization is caused by the accumulation of hydrogen gas on the surface of the cathode.
An electrochemical cell converts chemical energy into electrical energy through the flow of electrons between two electrodes, the anode (negative electrode) and the cathode (positive electrode), connected by an external circuit. During the operation of the cell, a potential difference is created between the anode and cathode, driving the flow of electrons from the anode to the cathode, which results in the production of electricity.
However, during the operation of the cell, the accumulation of hydrogen gas on the surface of the cathode can cause polarization, which is the reduction in the rate of the electrochemical reaction. This is because the hydrogen gas layer acts as a barrier that prevents the electrolyte from coming into contact with the cathode, which reduces the rate of the reaction. As a result, the potential difference between the anode and cathode decreases, which reduces the efficiency of the cell.
Therefore, in an electrochemical cell, polarization is caused by the accumulation of hydrogen gas on the surface of the cathode. This can be minimized by using a catalyst or by periodically removing the hydrogen gas layer to restore the rate of the electrochemical reaction.