Question 1 Report
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ 3 & 2 \end{pmatrix}\). Evaluate \(|Q|P\).
Answer Details
To evaluate \(|Q|P\), we first need to calculate the determinant of matrix \(Q\), denoted as \(|Q|\). $$ \begin{aligned} |Q| &= \begin{vmatrix} -1 & -2 \\ 3 & 2 \end{vmatrix} \\ &= (-1\times2) - (-2\times3) \\ &= -2 + 6 \\ &= 4 \end{aligned} $$ Next, we multiply the matrix \(P\) by the determinant of matrix \(Q\). $$ \begin{aligned} |Q|P &= 4\begin{pmatrix} 4 & 9 \end{pmatrix} \\ &= \begin{pmatrix} 16 & 36 \end{pmatrix} \end{aligned} $$ Therefore, the answer is \(\begin{pmatrix} 16 & 36 \end{pmatrix}\).