Question 1 Report
If 2√3−√2√3+2√2 2 3 − 2 3 + 2 2 = m + n √ 6, find the values of m and n respectively.
Answer Details
2√3−√2√3+2√2 2 3 − 2 3 + 2 2 = m + n√6 2√3−√2√3+2√2 2 3 − 2 3 + 2 2 x √3−2√2√3−√2 3 − 2 2 3 − 2
2√3(√3−2√2)−√2(√3−2√2)√3(√3−2√2)+2√2(√3−2√2) 2 3 ( 3 − 2 2 ) − 2 ( 3 − 2 2 ) 3 ( 3 − 2 2 ) + 2 2 ( 3 − 2 2 ) 2×3−4√6−6+2×23−2√6+2√6−4×2 2 × 3 − 4 6 − 6 + 2 × 2 3 − 2 6 + 2 6 − 4 × 2 = 6−4√6−√6+43−8 6 − 4 6 − 6 + 4 3 − 8 = 0−4√6−65 0 − 4 6 − 6 5 = 10−5√65 10 − 5 6 5 = − 2 + √6∴ m + n√6 6 = − 2 + √6m = − 2, n = 1