Question 1 Report
(a) Explain in terms of the kinetic theory why a tyre should not be overinflated.
(b)The following results were obtained at room temperature in an experiment to verify one of the gas laws using a glass syringe:
Pressure (P) of air in syringe (atm) |
Volume (V) of air in syringe (cm\(^3\) | \(\frac{I}{V}\) |
0.100 | 10.00 | 0.100 |
0.125 |
8.00 | 0.125 |
0.150 |
6.60 | 0.150 |
0.175 |
5.60 | 0.179 |
0.200 |
4.80 | 0.208 |
0.225 | 4.40 | 0.227 |
(i) Plot a graph of P against \(\frac{1}{v}\), using 1 cm to represent 0.01 atm on the vertical axis and 1cm to represent 0.02 unit on the horizontal axis.
(ii) Which of the gas laws is in agreement with the results?
(c) The flow chart below represents the stages involved in the manufacture of H\(_2\)SO\(_4\).
+x +Conc. H\(_2\)SO\(_4\) +H\(_2\)O
S + O\(_2\) \(\to\) SO\(_2\) \(\to\) SO\(_3\) \(\to\) Y \(\to\) Conc H\(_2\)SO\(_4\)
stage I stage II stage III stage IV
(i) Name the process represented by the chart.
(ii) Identify reactant X and product Y.
(iii) What are the operating temperature and pressure at stage II?
(iv) Mention the stage which requires a catalyst and state the catalyst used.
(v) Give the reason why the SO\(_3\) produced in stage II is not dissolved directly in water to form the acid
(d) When K\(_4\)Cr\(_2\)C\(_7\) dissolves in water, the following equilibrium is established:
Cr\(_2\)O\(^{2-}_{7(aq)}\) + H\(_2\)O\(_{(l)}\) \(\to\) 2CrO\(^{2-}_{4(aq)}\) + 2H\(_{aq}\)
(i) State the colour observed on adding a few drops of dilute H\(_2\)SO\(_4\) to the system.
(ii) Explain your answer in (d)(1).
(iii) What principle is applicable to this explanation?