If \(f(x) = \frac{4}{x} - 1, x \neq 0\), find \(f^{-1}(7)\).
Answer Details
To find \(f^{-1}(7)\), we need to find the value of \(x\) for which \(f(x) = 7\).
So, we start by setting \(f(x) = 7\) and solving for \(x\):
\begin{align*}
f(x) &= 7 \\
\frac{4}{x} - 1 &= 7 \\
\frac{4}{x} &= 8 \\
x &= \frac{4}{8} \\
x &= \frac{1}{2}
\end{align*}
Therefore, \(f^{-1}(7) = \frac{1}{2}\).
So, the correct option is:
- \(\frac{1}{2}\)