If \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} -1 \\ 5 \end{pmatrix}\), find \(|U + V|\).
Answer Details
We can find the sum of the vectors U and V by adding their corresponding components, i.e.,
$$
U + V = \begin{pmatrix} -1 \\ 5 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 9 \end{pmatrix}.
$$
Then, the magnitude (length) of the vector U + V is given by the formula
$$
|U + V| = \sqrt{(-3)^2 + 9^2} = \sqrt{90} = 3\sqrt{10}.
$$
Therefore, the answer is \(3\sqrt{10}\).