If m and n are the mean and median respectively of the set of numbers 2, 3, 9, 7, 6, 7, 8, 5, find m + 2n to the nearest whole number
Answer Details
To find the mean (m), you need to add up all the numbers in the set and then divide by the total number of numbers. In this case, the sum is 47 and the total number of numbers is 8, so the mean is 47/8 = 5.875.
To find the median (n), you need to arrange the numbers in order from smallest to largest and then find the middle number. In this case, the numbers in order are: 2, 3, 5, 6, 7, 7, 8, 9. The middle number is 7, so the median is 7.
To find m + 2n, you just need to substitute the values of m and n into the expression and solve. m + 2n = 5.875 + 2(7) = 19.875.
To the nearest whole number, m + 2n is 20. Therefore, the answer is: 19.