In the diagram, the tangent MN makes an angle of 55o with the chord PS. IF O is the centre of the circle, find
Answer Details
To solve this problem, we need to use the fact that the angle between a tangent and a chord of a circle is equal to the angle formed by the chord in the opposite segment.
Let's call the point where the tangent MN touches the circle point T. Then, angle MOT is 90 degrees because OT is a radius of the circle and MT is a tangent, and these two lines are perpendicular at point T.
Also, angle MTS is 55 degrees because MN is tangent to the circle and makes an angle of 55 degrees with PS. Therefore, angle MTN is 180 - 90 - 55 = 35 degrees because the angles in a triangle add up to 180 degrees.
Now, let's consider the triangle OTN. We know that angle OTN is 90 degrees because OT is a radius of the circle and TN is a tangent, and these two lines are perpendicular at point T. We also know that angle MTN is 35 degrees. Therefore, angle OTM is 180 - 90 - 35 = 55 degrees because the angles in a triangle add up to 180 degrees.
Finally, we can see that angle PTS is equal to angle OTM because they both intercept the same arc PS. Therefore, angle PTS is also 55 degrees. Since angle PTS is half of angle POS (which is equal to 110 degrees because it intercepts a semicircle), angle POS is 2 * 110 = 220 degrees.
Finally, the angle between the tangent MN and the chord PS is equal to angle MTS, which is 55 degrees. Therefore, the answer is option (C) 35o.