To factorize 2e\(^2\) - 3e + 1, we can use the quadratic formula:
e = (-b ± √(b² - 4ac)) / 2a
where a = 2, b = -3, and c = 1.
Plugging in the values, we get:
e = (3 ± √(9 - 8)) / 4
e = (3 ± 1) / 4
So the roots are e = 1 and e = 1/2.
Therefore, we can factorize 2e\(^2\) - 3e + 1 as:
2e\(^2\) - 3e + 1 = 2(e - 1)(e - 1/2)
Simplifying this expression, we get:
2(e - 1)(2e - 1)
Therefore, the factorization of 2e\(^2\) - 3e + 1 is (2e-1) (e-1), which corresponds to option (A).