An arc of length 22cm subtends an angle of θ at the center of the circle. What is the value of θ if the radius of the circle is 15cm?[Take π = 22/7]
Answer Details
In a circle, the ratio of the arc length to the circumference of the circle is equal to the ratio of the angle subtended by the arc at the center of the circle to the angle of one full revolution (360 degrees). Using this property, we can find the value of the angle θ in the following way: The circumference of the circle is given by: C = 2πr = 2 x (22/7) x 15 = 94.29 cm The given arc length is 22 cm. Therefore, the ratio of the arc length to the circumference of the circle is: 22/94.29 = 0.2332 Let the angle of one full revolution be 360 degrees. Then, the ratio of the angle subtended by the arc at the center of the circle to the angle of one full revolution is also 0.2332. Thus, we can write: θ/360 = 0.2332 Multiplying both sides by 360, we get: θ = 360 x 0.2332 = 83.952 degrees (approximately) Therefore, the value of θ is approximately 84 degrees. The correct option is: - 84o