Nkojọpọ....
|
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
|
Tẹ ibi lati pa |
|||
Ibeere 1 Ìròyìn
The average translational kinetic energy of gas molecules depends on
Awọn alaye Idahun
The average translational kinetic energy of gas molecules is directly related to the temperature of the gas. This relationship is based on the principles of kinetic molecular theory, which explains the behavior of gas molecules in terms of their motion.
Let's break this down simply:
1. Temperature and Kinetic Energy:
The average translational kinetic energy of gas molecules is given by the equation:
\( KE_{avg} = \frac{3}{2} k_B T \)
where \( KE_{avg} \) is the average translational kinetic energy, \( k_B \) is the Boltzmann constant, and \( T \) is the absolute temperature in Kelvin. This formula shows that the kinetic energy is directly proportional to the temperature.
2. What This Means:
As the temperature of a gas increases, the molecules move faster, which increases their translational kinetic energy. Conversely, as the temperature decreases, the molecules slow down, resulting in lower kinetic energy.
It is important to note that this relation is independent of the pressure and the number of moles of the gas. While pressure and the number of moles do affect the overall behavior of a gas, they do not directly influence the average translational kinetic energy of individual molecules.
Therefore, the correct explanation is that the average translational kinetic energy of gas molecules depends on temperature only.
Ibeere 2 Ìròyìn
When a charged ebonite rod is brought near a charged glass rod, there will be
Awọn alaye Idahun
When a charged ebonite rod is brought near a charged glass rod, there will be attraction. This is because charged objects obey the fundamental principle of electrostatics, which states that opposite charges attract each other while like charges repel each other.
An ebonite rod typically acquires a negative charge when rubbed with fur, as it gains electrons. In contrast, a glass rod usually acquires a positive charge when rubbed with silk, as it loses electrons. Therefore, when these two objects, one negatively charged and the other positively charged, are brought near each other, the opposite charges will attract.
Ibeere 3 Ìròyìn
What is the least possible error encountered when taking measurement with a metre rule?
Awọn alaye Idahun
A standard meter rule has markings that are usually every millimeter (1 mm). The least count, which is the smallest measurement that can be accurately read, is often 1 mm.
The least possible error is generally considered to be half of the smallest division, so it is ±0.05cm (or ±0.5mm).
Ibeere 4 Ìròyìn
The process by which plants loss water to the atmosphere is
Awọn alaye Idahun
The process by which plants lose water to the atmosphere is called transpiration.
Transpiration is a fundamental process in the life of a plant. During this process, water is absorbed by the roots from the soil and is then transported through the xylem vessels in the stem and leaves. Once in the leaves, water evaporates into the atmosphere from the surface of tiny pores known as stomata.
Here's a simple breakdown of how transpiration works:
Transpiration is crucial for a number of reasons:
Understanding transpiration is essential in fields like agriculture, where managing water resources efficiently can significantly impact plant growth and crop yield.
Ibeere 5 Ìròyìn
Using the diagram above, the effective force pushing it forward at an angle 60º is
Awọn alaye Idahun
To determine the effective force pushing the object forward at an angle of 60º, we need to resolve the given force into its components. Specifically, we are interested in the horizontal component of the force, as this is the part that effectively pushes the object forward.
The general formula to calculate the horizontal component of a force (Fx) when the force is applied at an angle (θ) is:
Fx = F * cos(θ)
Where:
Assuming the magnitude of the force applied (F) is 50N, then the effective forward force can be calculated as follows:
Fx = 50N * cos(60º)
Using the trigonometric value:
cos(60º) = 0.5
Therefore:
Fx = 50N * 0.5
Fx = 25N
Hence, the effective force pushing it forward at an angle of 60º is 25.00N. Therefore, the correct answer is 25.00N.
Ibeere 6 Ìròyìn
An object is placed 25cm in front of a convex mirror has its image formed 5cm behind the mirror. what is the focal length of the convex mirror
Awọn alaye Idahun
Object distance (u) = -25 cm (negative because the object is in front of the mirror)
Image distance (v) = +5 cm (positive because the image is behind the convex mirror)
Using 1f = 1u + 1v
1f = 1−25 + 15
f = 254 = 6.250cm.
Ibeere 7 Ìròyìn
When thermal energy in a solid is increased, the change in state is called
Awọn alaye Idahun
When the thermal energy in a solid is increased, the solid particles gain energy and begin to vibrate more vigorously. As the temperature rises, these particles eventually have enough energy to overcome the forces holding them in their fixed positions. This leads to a change of state from a solid to a liquid. This process is known as melting.
To further understand this, imagine an ice cube. As it absorbs heat, it gains energy, and the ice (which is a solid) starts to turn into water (which is a liquid). This transition is what we refer to as melting.
Thus, the term that describes this change of state, when a solid is heated and turns into a liquid, is melting.
Ibeere 8 Ìròyìn
If the velocity ratio of a machine is 4, what does it mean?
Awọn alaye Idahun
The velocity ratio of a machine is a concept used to explain how much the machine is expected to amplify the input motion. If the velocity ratio of a machine is 4, it means that the distance moved by the effort is 4 times greater than the distance moved by the load.
To understand this concept better, consider what a machine does: it allows you to apply a small effort over a longer distance to move a heavy load over a shorter distance. In this scenario, if the velocity ratio is 4, then for every 4 meters (or units of distance) you exert effort, the load will move 1 meter (or unit of distance).
Ibeere 9 Ìròyìn
If the displacement of a car is proportional to the square of time, then the car is moving with
Awọn alaye Idahun
When we say that the displacement of a car is proportional to the square of time (d ∝ t²), it indicates a relationship between displacement (d) and time (t). This relationship is characteristic of motion where there is constant acceleration. Essentially, it means that the car is not moving at a constant speed (velocity) but is accelerating at a constant rate.
The mathematical representation of this scenario can be expressed using the formula for displacement under uniform acceleration:
d = ut + (1/2)at².
In this equation:
When the displacement is directly proportional to the square of time (d ∝ t²), it implies that the second term of the equation, which contains the (1/2)at² part, dominates the relationship. Thus, the initial velocity (u) is typically zero or negligible, making the entire displacement dependent on how time squared interacts with acceleration.
Therefore, the car is moving with uniform acceleration.
Ibeere 10 Ìròyìn
The total number of ATP produced during glycolysis is
Awọn alaye Idahun
During the process of glycolysis, a single glucose molecule is broken down into two molecules of pyruvate. During this metabolic pathway, there is a net gain of adenosine triphosphate (ATP) molecules. To understand how many ATP molecules are produced, let's break it down step by step.
1. **Initial ATP Investment:** Glycolysis initially requires an investment of 2 ATP molecules to phosphorylate glucose and convert it into a more reactive form during the early stages of the glycolytic pathway.
2. **ATP Production:** As glycolysis progresses, a total of 4 ATP molecules are produced. This occurs in the later steps of the pathway where adenosine diphosphate (ADP) is phosphorylated to form ATP. This is known as substrate-level phosphorylation.
3. **Net ATP Gain:** To find out the net gain of ATP through glycolysis, simply subtract the initial ATP investment from the total ATP produced:
Net ATP = Total ATP produced - Initial ATP investment
Net ATP = 4 ATP - 2 ATP
Net ATP = 2 ATP
Thus, the net total number of ATP produced during glycolysis is 2 molecules.
Ibeere 11 Ìròyìn
A rectifier is a device that changes
Awọn alaye Idahun
A rectifier is a device that changes alternating current (A.C) to direct current (D.C). Alternating current is the type of electrical current that changes direction periodically, while direct current flows in a single, constant direction.
Rectifiers are essential in numerous electrical devices, particularly those that require a stable and consistent power supply. For example, most electronic devices like mobile phone chargers, laptop adapters, and televisions operate on D.C. power, and rectifiers convert the household A.C. power supply to D.C. so that these devices can function properly.
In summary, a rectifier converts A.C., which is alternating power supply, into D.C., which is a steady flow of electricity in one direction, making it usable for electronic devices and various applications that require direct current.
Ibeere 12 Ìròyìn
The unit of impedance is
Awọn alaye Idahun
The unit of impedance is Ohm, which is symbolized by the Greek letter Ω (Omega). In electrical circuits, impedance (Z) is a measure of opposition that a circuit offers to the passage of electric current when a voltage is applied. It is similar to resistance but extends to alternating currents (AC) and contains the effects of resistance as well as reactance (which accounts for capacitors and inductors).
Just like resistance, the unit of impedance is the ohm because they measure similar concepts; however, impedance also accounts for phase shifts between voltage and current, which are not considered in simple resistance. Ohm's Law is used in AC circuits as Z = V/I, where Z is impedance, V is voltage, and I is current. This relationship shows why the unit of impedance is the same as that of resistance.
Ibeere 13 Ìròyìn
A cell of internal resistance of 2Ω supplies current through a resistor, X if the efficiency of the cell is 75%, find the value of X.
Awọn alaye Idahun
To solve the problem, let's first understand the concept of efficiency in this context. Efficiency refers to the ratio of the useful power output to the total power output of a system. In simpler terms, it tells us how much of the power provided by the cell is being effectively used by the resistor, X.
Given that the cell has an internal resistance (r) of 2Ω and we need the efficiency to be 75%, we will follow these steps:
Efficiency (%) = (R / (R + r)) * 100
Where:
According to the problem, efficiency is 75%, so:
(X / (X + 2)) * 100 = 75
First, let’s eliminate the percentage by dividing both sides by 100:
(X / (X + 2)) = 0.75
Now, let's solve for X:
X = 0.75 * (X + 2)
X = 0.75X + 1.5
0.25X = 1.5
X = 1.5 / 0.25
X = 6 Ω
Hence, for the cell to have an efficiency of 75%, the value of the resistor X must be 6Ω.
Ibeere 14 Ìròyìn
At a pressure of 105 Nm−2 , a gas has a volume of 20m3 . Calculate the volume at 4 x 105 Nm−2 at constant temperature.
Awọn alaye Idahun
In order to solve this problem, we can apply **Boyle's Law**, which states that the **pressure** and **volume** of a gas are inversely proportional at a constant temperature. Mathematically, this is expressed as:
P1V1 = P2V2
Where:
Rearranging the formula to solve for V2:
V2 = (P1V1) / P2
Substituting the given values:
V2 = (105 Nm-2 x 20 m3) / (4 x 105 Nm-2)
By calculating:
V2 = (2100 m3) / 4 x 105
V2 = 5 m3
Therefore, at a pressure of 4 x 105 Nm-2, the volume of the gas is 5 m3.
Ibeere 15 Ìròyìn
Which of the following materials has a very large energy gap band?
Awọn alaye Idahun
An insulator is a material that has a very large energy gap between its valence band and conduction band. To understand this, let's first consider the concept of energy bands: In materials, electrons exist in different energy levels. These levels form bands called the valence band and the conduction band. A material is classified based on the size of the energy gap between these bands.
Thus, insulators have a very large energy gap band, making them poor conductors of electricity.
Ibeere 16 Ìròyìn
A body is whirled in a horizontal circle at the rate of 800 revolutions per minute. Determine the angular velocity
Awọn alaye Idahun
To determine the angular velocity of a body whirled in a horizontal circle at a rate of 800 revolutions per minute (rpm), we need to convert this to the standard unit of angular velocity, which is radians per second (rad/s).
Here’s how you can calculate it:
Now let's perform the conversion:
Rounding up the decimal to a consistent significant figure, the angular velocity is approximately 26.7π radians per second.
Ibeere 17 Ìròyìn
I It wets glass
II It needs to be coloured
III It has a low density
Water is not suitable for use as a thermometric liquid because
Awọn alaye Idahun
Water is not suitable for use as a thermometric liquid because:
a) It wets glass: This can cause issues with reading the level of the liquid.
b) It needs to be coloured: Water is typically clear, making it difficult to see the level without coloring.
c) It has a low density: This can affect the sensitivity and accuracy of the thermometer.
Ibeere 19 Ìròyìn
I
6 X + 6 H2 O → C6 H12 O6 + 6O2
III chlorophyll II IV
Use the diagram above to answer question that follows
The part labelled I is
Awọn alaye Idahun
The part labelled I in the diagram refers to **sunlight**.
Here's a simple explanation:
The given chemical equation is a representation of **photosynthesis**, a process by which green plants, algae, and some bacteria convert light energy, typically from the sun, into chemical energy stored in glucose (C6H12O6) and release oxygen (O2) as a by-product.
In the context of the equation:
- **6CO2 (Carbon Dioxide) + 6H2O (Water) → C6H12O6 (Glucose) + 6O2 (Oxygen)**
The arrow indicates the transformation that occurs during the process. The **chlorophyll** (labelled in the diagram) indicates the presence of chlorophyll pigments in the chloroplasts of plant cells which are essential for **absorbing sunlight**.
Since **sunlight** is the source of energy that powers this transformation, it is the correct component for the part labelled I in the diagram.
Ibeere 20 Ìròyìn
An ideal transformer has
Awọn alaye Idahun
An ideal transformer is a hypothetical concept used in electrical engineering to simplify the analysis of real transformers. In an ideal transformer, several assumptions are made to avoid losses and inefficiencies. Here's what an ideal transformer has:
No flux leakage: In an ideal transformer, it is assumed that all the magnetic flux generated in the primary coil is perfectly linked with the secondary coil. This means there is no flux leakage. This assumption ensures maximum efficiency, as all the energy is transferred from the primary to the secondary coil without losses.
Let's briefly discuss the other concepts to understand why they don't pertain to an ideal transformer:
Maximum primary resistance: In an ideal transformer, the resistance of the windings is assumed to be zero. If the primary has maximum resistance, it would result in power loss due to the resistance, contradicting the idea of an ideal transformer.
Hysteresis: This refers to the energy loss that happens in the core material due to the cyclic magnetization and demagnetization processes. An ideal transformer assumes there is no hysteresis loss, meaning the core material does not absorb any energy during these cycles.
Eddy current: These are loops of electric current induced within conductors by a changing magnetic field, which can cause significant energy loss. In an ideal transformer, it is assumed that there are no eddy currents, hence no energy loss due to this effect.
In summary, an ideal transformer is characterized by having no flux leakage, and it assumes that there are no losses due to resistance, hysteresis, or eddy currents. This makes the ideal transformer a perfect, lossless device for the purposes of theoretical analysis.
Ibeere 21 Ìròyìn
When a cell of e.m.f 3.06V is connected, the balance of a potentiometer is 75cm, Calculate the new balance of a cell of e.m.f 2.295V
Awọn alaye Idahun
To solve this problem, we first need to understand the principle behind a potentiometer. A potentiometer is a device used to measure the electromotive force (e.m.f) of a cell by comparing it with a known voltage. The balance length on a potentiometer corresponds to a proportional measurement of the e.m.f.
Let's denote:
- \( V_1 \): the e.m.f of the first cell = 3.06V
- \( l_1 \): the balance length for the first cell = 75 cm
- \( V_2 \): the e.m.f of the second cell = 2.295V
- \( l_2 \): the balance length for the second cell (which we need to find)
The basic relationship for a potentiometer is given by:
\( V_1 / V_2 = l_1 / l_2 \)
Substituting the given values:
\( 3.06 / 2.295 = 75 / l_2 \)
We need to solve for \( l_2 \):
\( l_2 = (2.295 \times 75) / 3.06 \)
Now, calculating the above expression:
\( l_2 = 171.975 / 3.06 \approx 56.26 \) cm
Therefore, the new balance length for the cell with an e.m.f of 2.295V is approximately 56.26 cm.
Ibeere 22 Ìròyìn
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Awọn alaye Idahun
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Ibeere 23 Ìròyìn
The mechanical advantage of the machine shown above
Awọn alaye Idahun
Mechanical advantage of a machine = LOADEFFORT
In this case of a wedge, we can consider the dimensions given:
Load distance (height of the machine): 15 cm
Effort distance (movement of the effort): 0.5 cm
M.A = 150.5 = 30.0
Ibeere 24 Ìròyìn
Calculate the value of electric field intensity due to a charge of 4μC if the force due to the charge is 8N
Awọn alaye Idahun
To calculate the electric field intensity due to a charge, we need to use the formula:
Electric Field Intensity (E) = Force (F) / Charge (q)
In this problem, we are given that the force (F) is 8 Newtons (N) and the charge (q) is 4 microcoulombs (μC). First, we need to convert the charge from microcoulombs to coulombs:
1 microcoulomb (μC) = 1 x 10-6 coulombs (C)
Therefore, 4 μC = 4 x 10-6 C.
Now we can use the formula to find the electric field intensity:
E = F / q
E = 8 N / (4 x 10-6 C)
E = 8 / 4 x 106
E = 2 x 106
Thus, the value of the electric field intensity is 2 x 106 N/C.
Ibeere 25 Ìròyìn
The energy stored in the above capacitor is
Awọn alaye Idahun
The energy stored in the capacitor = 12 q2C
Where C = 2F, q = 3C
= 12 322 = 94 = 2.25J
Ibeere 26 Ìròyìn
The dimension of young's modulus,E is given by
Awọn alaye Idahun
Young's modulus, denoted by E, is a measure of the stiffness of a solid material. It is defined as the ratio of stress to strain in a material that is behaving elastically. Stress is the force applied per unit area, and strain is the deformation experienced by the material in response to the applied stress.
Let's break down the dimensions for Young's modulus:
Stress: Stress is defined as force per unit area. Thus, the dimension of stress can be expressed as:
Stress = Force / Area
The dimension of force is given by mass × acceleration, i.e., Force = MLT-2 (where M is mass, L is length, and T is time).
The dimension of area is length × length = L2.
Therefore, the dimension of stress is:
Stress = (MLT-2) / (L2) = ML-1T-2
Strain: Strain is the ratio of the change in length to the original length and is dimensionless because it is a ratio of two lengths.
Thus, the dimension of strain is simply 1 (dimensionless).
Since Young's modulus is the ratio of stress to strain, its dimension is the same as that of stress. Therefore, the dimension of Young’s modulus E is:
ML-1T-2
Ibeere 27 Ìròyìn
Which of the following structures enables the exchange of gases in insects?
Awọn alaye Idahun
In insects, the structure responsible for the exchange of gases is the tracheae. Insects have a unique respiratory system where air is taken in through tiny openings called spiracles located on the surface of their body.
The air then travels directly into a network of tubes known as the tracheae. The tracheae branch out extensively throughout the insect's body, allowing oxygen to diffuse directly to the insect's tissues and cells. The carbon dioxide produced in the cells travels back through the tracheae and exits the body through the spiracles.
Other structures like the skin, Malpighian tubules, and flame cells have different functions:
Thus, the correct answer is the tracheae as they specifically enable the exchange of gases in insects.
Ibeere 28 Ìròyìn
Find the amount of current required to deposit 0.02kg of metal in a given electrolysis for 120 seconds. [electro chemical equivalent of the metal = 1.3 x 10−7 kgC−1 ]
Awọn alaye Idahun
To determine the amount of current required, we need to use Faraday's laws of electrolysis. The first law states that the mass of the substance deposited at an electrode is directly proportional to the quantity of electricity (or charge) that passes through the electrolyte.
Here, we have:
According to Faraday's first law of electrolysis, the mass (\( m \)) can be calculated by the formula:
m = z \times I \times t
Where:
Rearranging the formula to solve for current \( I \):
I = \(\frac{m}{z \times t}\)
Substituting the given values into the formula:
I = \(\frac{0.02 \, \text{kg}}{1.3 \times 10^{-7} \, \text{kg/C} \times 120 \, \text{s}}\)
Calculating the denominator:
I = \(\frac{0.02}{1.56 \times 10^{-5}}\)
Solving for \( I \):
I = 1282.05 \, \text{A}
Thus, the appropriate amount of current required to deposit 0.02 kg of metal in 120 seconds is approximately 1.3 x 103 A.
Ibeere 29 Ìròyìn
The major building block of an organism is...
Awọn alaye Idahun
The major building block of an organism is Carbon. Let me explain why in a simple yet comprehensive manner:
Carbon is a unique element found in all living organisms. Its importance comes from its ability to form stable bonds with many other elements, including hydrogen, oxygen, nitrogen, phosphorus, and sulfur. This versatility allows carbon to act as a backbone for the building of complex organic molecules, including proteins, nucleic acids (such as DNA and RNA), carbohydrates, and lipids. These molecules are essential for the structure, function, and regulation of the body's tissues and organs.
Here's why Carbon is indispensable:
In summary, Carbon is the primary building block of life due to its unique chemical properties that allow the formation of complex molecules necessary for life's structure and processes.
Ibeere 30 Ìròyìn
288KJ is conducted across two opposite faces of a 3m cube of temperature gradient 90ºCm−1 in 7200s. Calculate the thermal conductivity.
Awọn alaye Idahun
The thermal conductivity of a material is a measure of its ability to conduct heat. It is defined by the formula:
Q = k × A × ΔT/Δx × t
Where:
We are given:
The cube has each side measuring 3 meters, so the area A of one face (since heat is conducted across two opposite faces, effectively using one face area for calculation) is:
A = 3m × 3m = 9 m2
Now, we need to solve for k (thermal conductivity):
Q = k × A × ΔT/Δx × t
288,000 J = k × 9 m2 × 90 ºC/m × 7,200 s
k = 288,000 / (9 × 90 × 7,200)
Calculate the denominator:
9 × 90 × 7,200 = 5,832,000
Therefore:
k = 288,000 / 5,832,000 ≈ 0.0493 W/mK
This converts approximately to 4.93 × 10-2 W/mK.
Therefore, the correct answer is 4.9 × 10-2 W/mK.
Ibeere 31 Ìròyìn
Which of the following operates based on magnetic effect of electric current?
Awọn alaye Idahun
The device that operates based on the magnetic effect of electric current is the Dynamo.
To explain further, let's look at the concept of the magnetic effect of electric current:
A Dynamo is a device that converts mechanical energy into electrical energy. It operates based on the phenomenon called electromagnetic induction, which occurs due to the magnetic effect of electric current. When a coil of wire within the dynamo rotates in the presence of a magnetic field, it induces an electric current in the coil. Thus, the operation of a dynamo relies on the interaction between electric current and magnetic fields.
To contrast with other options:
Ibeere 32 Ìròyìn
One main feature of trees in the savanna habitat is the possession of
Awọn alaye Idahun
The main feature of trees in the savanna habitat is the possession of thick, corky bark. The savanna is characterized by a distinct wet and dry season. During the dry season, fires are common as dry grasses and leaves become highly flammable. To adapt to this environmental condition, many trees in the savanna have developed a thick, corky bark which helps protect them against these frequent fires. This bark acts as an insulator, shielding the vital inner tissues of the tree from the heat of the flames. Additionally, this adaptation helps the trees retain moisture, which is crucial during the arid months when water is scarce.
Ibeere 33 Ìròyìn
An example of a non-rechargeable cell is
Awọn alaye Idahun
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Ibeere 34 Ìròyìn
The acceleration of a free fall due to gravity is not a constant everywhere on the Earth's surface because
Awọn alaye Idahun
The elliptical shape of the Earth: The Earth is not a perfect sphere; it is slightly flattened at the poles and bulging at the equator. This shape causes variations in gravitational acceleration.
Ibeere 35 Ìròyìn
A thick glass tumbler cracks when boiling water is poured into it because
Awọn alaye Idahun
When boiling water is poured into a thick glass tumbler, the inner surface of the glass is suddenly exposed to a much higher temperature compared to the outer surface. Glass is a poor conductor of heat, which means it does not transfer heat quickly. As a result, the inside of the tumbler becomes hot and attempts to **expand quickly**, while the outside remains cooler and does not expand at the same rate.
**This uneven expansion** creates tension between the inner and outer layers of the glass. The inner surface tries to expand but is constrained by the cooler, rigid outer surface, which isn't expanding as much or as quickly. This stress and tension can lead to cracking.
Therefore, the correct reason a thick glass tumbler cracks when boiling water is poured into it is because **the inside expands more rapidly than the outside.**
Ibeere 36 Ìròyìn
Awọn alaye Idahun
In a series resonant circuit, the current flowing in the circuit is at its maximum. Let me explain why:
In a series resonant circuit, we have a resistor (R), inductor (L), and capacitor (C) connected in series with an AC source. At a particular frequency called the resonant frequency, these circuits exhibit some unique characteristics. This resonant frequency is determined by the values of the inductor and capacitor and is given by the formula:
f₀ = 1 / (2π√(LC))
At the resonant frequency:
Thus, in a series resonant circuit, when it is operating at its resonant frequency, the current flowing is at its maximum.
Ibeere 37 Ìròyìn
In a solar panel, solar beam is concentrated by using
Awọn alaye Idahun
In a solar panel system, the type of mirror used to concentrate solar beams is the Concave Mirror.
Explanation:
A concave mirror is a type of mirror that curves inward, like the inside of a bowl. This shape is very effective at focusing light. When sunlight hits a concave mirror, the mirror's shape causes the light beams to converge, or come together, at a single point known as the focus. This concentrated light can then be used to generate heat or electricity more efficiently.
Why not the others?
A convex mirror curves outward and disperses light beams rather than concentrating them.
A plane mirror has a flat surface and reflects light at the same angle it receives it, meaning it doesn't concentrate the beams.
A triangular mirror is not typically used in solar applications for concentrating light as its shape is not conducive to focusing beams effectively.
Therefore, a concave mirror is best suited for concentrating solar beams in solar panel systems.
Ibeere 38 Ìròyìn
Use the diagram above to answer the question that follows
The zone labelled II is called
Awọn alaye Idahun
The zone labelled II is called the littoral zone.
To explain: The littoral zone is a part of a body of water that is close to the shore. It is typically characterized by abundant sunlight and nutrient availability, making it a highly productive area for aquatic plants and animals. This zone supports various forms of life such as algae, small fish, and invertebrates. The key feature of the littoral zone is its proximity to the shoreline, where sunlight can penetrate to the bottom, allowing for photosynthesis to occur.
Ibeere 39 Ìròyìn
How much joules of heat are given out when a piece of iron, of mass 60g and specific heat capacity 460JKg−1 K−1 , cools from 75ºC to 35ºC
Awọn alaye Idahun
To find out how much heat is given out when the piece of iron cools down, we can use the formula for heat transfer:
Q = mcΔT
Where:
First, let's list the values given and convert the mass from grams to kilograms:
Now, calculate the change in temperature:
ΔT = final temperature - initial temperature = 35ºC - 75ºC = -40ºC
Note: Since we are calculating the heat given out as the iron cools, the temperature change will be negative, which will make Q positive, indicating heat is released.
Substitute these values into the heat transfer formula:
Q = mcΔT = (0.06 kg) x (460 J/Kg·K) x (-40ºC)
Q = 0.06 x 460 x -40
Q = -1104 Joules
Since the question asks for how much heat is given out, we consider the positive value of Q, which is 1104J. Therefore, 1104J of heat is given out when the piece of iron cools from 75ºC to 35ºC.
Ibeere 40 Ìròyìn
Bifocal lens is used to correct the eye defect of
Awọn alaye Idahun
Bifocal lenses are primarily used to correct the eye defect known as presbyopia. As people age, the lens of the eye naturally loses its flexibility, making it difficult to focus on objects that are close up. This condition is known as presbyopia. A bifocal lens is designed with two different optical powers to accommodate this need. The upper part of the lens is usually crafted for distance vision, while the lower segment is designed for near vision tasks, such as reading.
Astigmatism is a different eye condition caused by irregular curvature of the cornea or lens, resulting in blurred or distorted vision at all distances. This condition is typically corrected with cylindrical lenses rather than bifocals.
Hypermetropia, commonly known as farsightedness, is a condition where distant objects can be seen more clearly than near ones. Simple convex lenses are usually used for this correction.
Myopia, or nearsightedness, is a condition where nearby objects are seen clearly, while distant objects appear blurry. Concave lenses are generally used to correct this condition.
In summary, bifocal lenses are specifically designed to address the challenges of focusing at different distances simultaneously, making them ideal for managing presbyopia.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?