Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
The property by which a material returns to its original shape after the removal of force is called
Awọn alaye Idahun
The property by which a material returns to its original shape after the removal of force is called Elasticity.
Let's break it down:
Elasticity: This is a property of a material that allows it to return to its original shape or size after the force that caused deformation is removed. Think of a rubber band—you can stretch it, but once you let it go, it snaps back to its initial shape.
Ductility: This property refers to a material's ability to be stretched into a wire. For example, materials like copper are ductile because they can be drawn into thin wires without breaking.
Malleability: This is a material's ability to withstand deformation under compressive stress. It is the property that allows metals to be hammered or rolled into thin sheets. Gold is a good example of a malleable metal.
Plasticity: This property describes the material's ability to undergo permanent deformation without breaking. When a plastic region is reached, the material will not return to its original shape after the removal of force.
Therefore, when we speak of a material returning to its original shape after the removal of force, we are specifically referring to Elasticity.
Ibeere 2 Ìròyìn
When thermal energy in a solid is increased, the change in state is called
Awọn alaye Idahun
When the thermal energy in a solid is increased, the solid particles gain energy and begin to vibrate more vigorously. As the temperature rises, these particles eventually have enough energy to overcome the forces holding them in their fixed positions. This leads to a change of state from a solid to a liquid. This process is known as melting.
To further understand this, imagine an ice cube. As it absorbs heat, it gains energy, and the ice (which is a solid) starts to turn into water (which is a liquid). This transition is what we refer to as melting.
Thus, the term that describes this change of state, when a solid is heated and turns into a liquid, is melting.
Ibeere 3 Ìròyìn
Mouth part adapted for piercing and sucking is found in
Awọn alaye Idahun
The mouthpart adapted for piercing and sucking is found in the mosquito. Mosquitoes have a specialized mouth structure called a proboscis. This proboscis is long and slender, allowing mosquitoes to puncture the skin of their hosts and suck blood. The proboscis is a complex structure that contains several needle-like parts that make the piercing and sucking process efficient and effective.
Ibeere 4 Ìròyìn
The land and sea breeze is attributed to
Awọn alaye Idahun
The phenomenon of land and sea breeze is primarily attributed to convection.
To understand this, let's first look at what land and sea breezes are:
Land Breeze: At night, the land cools down faster than the sea. The cooler, denser air from the land moves towards the sea, and this is known as a land breeze.
Sea Breeze: During the day, the land heats up more quickly than the sea. The warmer, lighter air over the land rises, and the cooler air from the sea moves in to take its place. This movement of air from the sea to the land is known as a sea breeze.
Both of these processes involve the movement of air due to differences in temperature and density, which is essentially the process of convection.
Convection is the transfer of heat through a fluid (like air or water) and is responsible for moving air masses and creating these breezes. The warm air, being less dense, rises, and the cooler, denser air moves in to replace it.
In contrast, conduction is the transfer of heat through a solid material, and radiation is the transfer of heat in the form of electromagnetic waves, neither of which primarily drive the processes of these breezes, making convection the key player.
Ibeere 5 Ìròyìn
Using the diagram above, the effective force pushing it forward at an angle 60º is
Awọn alaye Idahun
To determine the effective force pushing the object forward at an angle of 60º, we need to resolve the given force into its components. Specifically, we are interested in the horizontal component of the force, as this is the part that effectively pushes the object forward.
The general formula to calculate the horizontal component of a force (Fx) when the force is applied at an angle (θ) is:
Fx = F * cos(θ)
Where:
Assuming the magnitude of the force applied (F) is 50N, then the effective forward force can be calculated as follows:
Fx = 50N * cos(60º)
Using the trigonometric value:
cos(60º) = 0.5
Therefore:
Fx = 50N * 0.5
Fx = 25N
Hence, the effective force pushing it forward at an angle of 60º is 25.00N. Therefore, the correct answer is 25.00N.
Ibeere 6 Ìròyìn
A practical application of total internal reflection is found in
Awọn alaye Idahun
A practical application of total internal reflection is found in fiber optics.
To understand this, let's break it down:
When light travels from one medium to another (such as from glass to air), it changes direction. This is known as refraction. However, there is a phenomenon called total internal reflection which occurs when light is traveling within a denser medium towards a less dense medium (like from glass to air) and hits the boundary at an angle greater than a certain critical angle. Instead of passing through, the light is completely reflected back into the denser medium.
Fiber optics technology makes use of this principle. In fiber optics, light is transmitted along the core of a thin glass or plastic fiber. The core is surrounded by another layer called the cladding. This cladding has a lower refractive index than the core, which facilitates total internal reflection. As a result, the light continuously reflects internally along the length of the fiber, allowing it to travel long distances with minimal loss.
This property is harnessed in various applications such as in high-speed telecommunication systems, medical equipment like endoscopes, and other technologies that require the transmission of data over long distances with high efficiency.
Ibeere 7 Ìròyìn
What is the colour of red rose under a blue light?
Awọn alaye Idahun
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Ibeere 8 Ìròyìn
The process by which plants loss water to the atmosphere is
Awọn alaye Idahun
The process by which plants lose water to the atmosphere is called transpiration.
Transpiration is a fundamental process in the life of a plant. During this process, water is absorbed by the roots from the soil and is then transported through the xylem vessels in the stem and leaves. Once in the leaves, water evaporates into the atmosphere from the surface of tiny pores known as stomata.
Here's a simple breakdown of how transpiration works:
Transpiration is crucial for a number of reasons:
Understanding transpiration is essential in fields like agriculture, where managing water resources efficiently can significantly impact plant growth and crop yield.
Ibeere 9 Ìròyìn
Two capacitors of 0.0003μF and 0.0006μF are connected in series, find their combined capacitance.
Awọn alaye Idahun
When capacitors are connected in series, the formula to find their combined capacitance \(C_{\text{total}}\) is given by:
\[ \frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2} \]
where \(C_1\) and \(C_2\) are the capacitances of the individual capacitors. In this case, \(C_1 = 0.0003 \, \mu\text{F}\) and \(C_2 = 0.0006 \, \mu\text{F}\).
First, calculate the reciprocal of each capacitance:
\[ \frac{1}{C_1} = \frac{1}{0.0003} \]
\[ \frac{1}{C_2} = \frac{1}{0.0006} \]
Calculating each value:
\[ \frac{1}{0.0003} = \frac{10^6}{3} \] and \[ \frac{1}{0.0006} = \frac{10^6}{6} \]
Now, add these values together:
\[ \frac{1}{C_{\text{total}}} = \frac{10^6}{3} + \frac{10^6}{6} = \frac{10^6 \times 2}{6} + \frac{10^6 \times 1}{6} = \frac{10^6 \times 3}{6} = \frac{10^6}{2} \]
Finally, take the reciprocal of the resulting value to find \(C_{\text{total}}\):
\[ C_{\text{total}} = \frac{2}{10^6} = 0.0002 \, \mu\text{F} \]
So, the combined capacitance of the two capacitors in series is 0.0002 μF.
Ibeere 10 Ìròyìn
A boy standing 408m from a wall blew a trumpet and heard the echo 2.4s later. Calculate the speed of the sound
Awọn alaye Idahun
To calculate the speed of sound, we need to understand that an echo involves a sound wave traveling to a surface and back. In this case, the sound travels from the boy to the wall and then returns.
The total distance that the sound wave travels is twice the distance from the boy to the wall because it goes to the wall and back. Therefore, the total distance is:
Total Distance = 2 x 408m = 816m
The echo was heard 2.4 seconds after the sound was made. The speed of sound can be calculated using the formula:
Speed of Sound = Total Distance / Time
Plugging in the values, we have:
Speed of Sound = 816m / 2.4s
When you perform the division, you find:
Speed of Sound = 340 m/s
Thus, the speed of the sound is 340 m/s, which is the correct answer.
Ibeere 11 Ìròyìn
A red shirt under a red light appears pale because red
Awọn alaye Idahun
To understand why a red shirt appears pale under red light, we need to consider how colors are perceived. A shirt's color is due to the light it reflects. A red shirt reflects red light and absorbs other colors. This is why it looks red under normal white light, which is made up of many colors including red.
When you place a red shirt under red light, the only available light to reflect is red. Since the shirt is already designed to reflect red light, it reflects the red light and appears its vivid color. However, it might appear brighter or paler since no other colors are present to contrast against the red.
Therefore, the best explanation is that the red shirt absorbs other colours and reflects red.
Ibeere 12 Ìròyìn
The energy in a moving car is an example of
Awọn alaye Idahun
The energy in a moving car is an example of kinetic energy.
To explain simply, **energy** is the ability to do **work** or cause **change**. There are different forms of energy, and **kinetic energy** is one of them. It is defined as the energy possessed by an object due to its motion.
When a car is moving, it possesses **kinetic energy** because its components are in **motion**. This motion energy allows the car to do tasks, such as transporting people or goods from one place to another. The faster the car moves, the greater its **kinetic energy**, and thus it can make a larger impact or do more work.
In contrast, energy forms like **mechanical energy** is a combination of both kinetic and potential energy; **electrical energy** is associated with electrical charge movement, while **potential energy** is related to the position or condition of an object (like a car parked on a hill). Therefore, the specific type of energy from a moving car is **kinetic energy**.
Ibeere 13 Ìròyìn
An effort of 40N is applied on a machine to lift a mass of 60kg. Determine the mechanical advantage of the machine [ g = 10ms2 ]
Awọn alaye Idahun
To determine the Mechanical Advantage (MA) of a machine, we use the formula:
MA = Load / Effort
Here, the Load is the weight of the mass being lifted, and the Effort is the force applied on the machine.
First, we need to calculate the Load. The Load is obtained by multiplying the mass of the object by the acceleration due to gravity (g = 10 m/s2).
So, the Load (weight of the mass) is:
Load = Mass × Gravity = 60 kg × 10 m/s2 = 600 N
The Effort given is 40 N.
Now, we can calculate the Mechanical Advantage:
MA = Load / Effort = 600 N / 40 N = 15
Therefore, the Mechanical Advantage of the machine is 15.
Ibeere 14 Ìròyìn
The power of a convex lens of focal length 20cm is
Awọn alaye Idahun
The power of a lens is a measure of its ability to converge or diverge light. It is defined as the reciprocal (or inverse) of the focal length of the lens. The formula for calculating the power (P) of a lens in diopters (D) is given by:
P = 1/f
where:
In this case, the focal length given is 20 cm. To apply the formula, we first need to convert this focal length into meters because the diopter is the reciprocal of the focal length in meters:
f = 20 cm = 0.20 m
Now, substitute the focal length in meters into the formula for power:
P = 1 / 0.20
P = 5.00 D
Thus, the power of the convex lens is 5.00 diopters. This indicates that the lens is capable of converging light at a distance of 5.00 meters.
Ibeere 15 Ìròyìn
Awọn alaye Idahun
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Ibeere 16 Ìròyìn
A rectifier is a device that changes
Awọn alaye Idahun
A rectifier is a device that changes alternating current (A.C) to direct current (D.C). Alternating current is the type of electrical current that changes direction periodically, while direct current flows in a single, constant direction.
Rectifiers are essential in numerous electrical devices, particularly those that require a stable and consistent power supply. For example, most electronic devices like mobile phone chargers, laptop adapters, and televisions operate on D.C. power, and rectifiers convert the household A.C. power supply to D.C. so that these devices can function properly.
In summary, a rectifier converts A.C., which is alternating power supply, into D.C., which is a steady flow of electricity in one direction, making it usable for electronic devices and various applications that require direct current.
Ibeere 17 Ìròyìn
Pilots uses aneroid barometer to know the height above sea level because
Awọn alaye Idahun
Aneroid barometers are compact and lightweight, making them suitable for use in aircraft where space and weight are critical considerations. They provide a reliable measurement of altitude based on changes in atmospheric pressure.
Ibeere 18 Ìròyìn
When a bus is accelerating, it must be
Awọn alaye Idahun
When a bus is accelerating, it is primarily changing its velocity. This is because velocity is a vector quantity, which means it includes both the speed and the direction of the object's movement. Acceleration refers to any change in this velocity. Therefore, the bus could be increasing its speed, decreasing its speed (which is also known as deceleration), or changing its direction. All these aspects involve a change in velocity.
Let's break it down further:
Changing its Speed: If the bus is speeding up or slowing down, it results in a change in the magnitude of its velocity, contributing to acceleration.
Changing its Direction: Even if the bus maintains a constant speed, if it changes direction (like taking a turn), its velocity is altered because direction is a part of velocity. This results in acceleration.
Changing its Position: While a change in position happens during acceleration, it is not the defining feature of acceleration. An object can change its position even if it is moving with constant velocity and not accelerating.
So, the key component here for acceleration is the change in velocity, which encompasses changes in speed, direction, or both.
Ibeere 19 Ìròyìn
A medium texture soil with high organic matter is
Awọn alaye Idahun
A medium texture soil with high organic matter is best described as loamy soil. Here's why:
Loamy soil is a type of soil that is characterized by a balanced mixture of sand, silt, and clay particles. Because of this blend, loamy soil is not too coarse like sandy soil, nor is it too compact and dense like clay soil, making it a medium texture.
Moreover, loamy soil is renowned for its high organic matter content. This means that it contains a significant amount of decomposed plant and animal residues, which enrich the soil and provide essential nutrients for plant growth. This high organic content enhances the soil's fertility and structure, enabling it to retain moisture yet drain well, making it ideal for farming and gardening.
In conclusion, due to its balanced texture and richness in organic matter, loamy soil is the best fit for a medium-textured soil with high organic matter.
Ibeere 20 Ìròyìn
When a charged ebonite rod is brought near a charged glass rod, there will be
Awọn alaye Idahun
When a charged ebonite rod is brought near a charged glass rod, there will be attraction. This is because charged objects obey the fundamental principle of electrostatics, which states that opposite charges attract each other while like charges repel each other.
An ebonite rod typically acquires a negative charge when rubbed with fur, as it gains electrons. In contrast, a glass rod usually acquires a positive charge when rubbed with silk, as it loses electrons. Therefore, when these two objects, one negatively charged and the other positively charged, are brought near each other, the opposite charges will attract.
Ibeere 21 Ìròyìn
A thick glass tumbler cracks when boiling water is poured into it because
Awọn alaye Idahun
When boiling water is poured into a thick glass tumbler, the inner surface of the glass is suddenly exposed to a much higher temperature compared to the outer surface. Glass is a poor conductor of heat, which means it does not transfer heat quickly. As a result, the inside of the tumbler becomes hot and attempts to **expand quickly**, while the outside remains cooler and does not expand at the same rate.
**This uneven expansion** creates tension between the inner and outer layers of the glass. The inner surface tries to expand but is constrained by the cooler, rigid outer surface, which isn't expanding as much or as quickly. This stress and tension can lead to cracking.
Therefore, the correct reason a thick glass tumbler cracks when boiling water is poured into it is because **the inside expands more rapidly than the outside.**
Ibeere 22 Ìròyìn
The degree of precision of a vernier caliper is
Awọn alaye Idahun
The degree of precision of a vernier caliper is actually the **smallest value** that the vernier scale can measure, which can be considered as the resolution or least count of the instrument. The degree of precision for most standard vernier calipers is 0.01 cm (or 0.1 mm). This means that the caliper can measure dimensions down to a hundredth of a centimeter.
To understand why this is the case, consider the construction of a vernier caliper:
This alignment allows more precise measurements than the main scale alone. If the vernier scale has 10 divisions which coincide over a length equal to 9 divisions on the main scale, then each division of the vernier scale represents an extra 0.01 cm. Therefore, it allows measuring smaller intervals between the main scale markings very precisely.
Thus, you won't find vernier calipers with a degree of precision of 0.005 cm, 0.1 cm, or 1.0 cm as options in standard practice for precise measurement tools.
Ibeere 23 Ìròyìn
The distance between two successive crests of a water wave is 0.25m. If a particle on the surface of the water makes four complete vertical oscillations in one second. Calculate the speed of the wave.
Awọn alaye Idahun
To calculate the speed of the wave, we need to understand some fundamental wave properties: **wavelength**, **frequency**, and **wave speed**.
1. **Wavelength (\( \lambda \))**: The wavelength is the distance between two successive crests of a wave. In this case, the wavelength is given as **0.25 meters**.
2. **Frequency (\( f \))**: Frequency is the number of complete oscillations or cycles that occur per second. It is given that a particle on the surface of the water makes **four complete vertical oscillations in one second**. So, the frequency is **4 Hz (hertz)**.
3. **Wave Speed (\( v \))**: The speed of a wave is calculated using the formula:
\( v = f \times \lambda \)
Where:
\( v \) is the wave speed,
\( f \) is the frequency, and
\( \lambda \) is the wavelength.
Substitute the given values into the formula:
\( v = 4 \text{ Hz} \times 0.25 \text{ m} \)
\( v = 1 \text{ m/s} \)
Therefore, the **speed of the wave** is 1 m/s.
Ibeere 24 Ìròyìn
A hydrometer of mass y kg and volume 2y x 10−5 m3 floats in a fluid with 20% of its volume above the fluid, what is the density of the fluid?
Awọn alaye Idahun
To find the density of the fluid, we need to apply the principle of floatation, which states that the weight of the fluid displaced by the submerged part of the object is equal to the weight of the object. Let's walk through the steps:
Step 1: Understand the volume submerged
The hydrometer has a total volume of 2y x 10-5 m3. It floats with 20% of its volume above the fluid. Hence, 80% of its volume is submerged in the fluid.
Submerged Volume, Vsub = (0.80) x (2y x 10-5 m3) = 1.6y x 10-5 m3
Step 2: Apply the principle of floatation
The weight of the fluid displaced equals the weight of the hydrometer.
Weight of hydrometer = Mass x Gravity = y kg x g (where g is the acceleration due to gravity). For the purpose of calculations, g can be considered as 9.81 m/s2.
Weight of displaced fluid = Density of fluid (ρfluid) x Submerged Volume x g
According to the principle of floatation:
y x g = ρfluid x 1.6y x 10-5 m3 x g
g is common on both sides and can be canceled out:
y = ρfluid x 1.6y x 10-5
Step 3: Solving for the density of the fluid
ρfluid = y / (1.6y x 10-5)
The y on both numerator and denominator cancels out:
ρfluid = 1 / (1.6 x 10-5)
ρfluid = 6.25 x 104 kg/m3
Thus, the density of the fluid is 6.25 x 104 kg/m3.
Ibeere 25 Ìròyìn
I It wets glass
II It needs to be coloured
III It has a low density
Water is not suitable for use as a thermometric liquid because
Awọn alaye Idahun
Water is not suitable for use as a thermometric liquid because:
a) It wets glass: This can cause issues with reading the level of the liquid.
b) It needs to be coloured: Water is typically clear, making it difficult to see the level without coloring.
c) It has a low density: This can affect the sensitivity and accuracy of the thermometer.
Ibeere 26 Ìròyìn
Bilateral symmetry,cylindrical bodies and double openings are characteristic features of
Awọn alaye Idahun
Bilateral symmetry, cylindrical bodies, and double openings are characteristic features of nematodes. Nematodes, also known as roundworms, have a body structure that is symmetric along a single plane, which results in two mirror-image halves, thus exhibiting bilateral symmetry.
Furthermore, they usually have a cylindrical body shape, which means their bodies are long and narrow like a cylinder and taper at both ends. This shape helps them move through their environment easily. Additionally, nematodes have a complete digestive system with two openings: a mouth and an anus. This means that food enters through the mouth, gets digested, and waste exits through the anus.
In contrast, organisms like hydra, protozoa, and protists possess different anatomical features. Hydras, for example, typically show radial symmetry, and protozoa and protists generally do not have a well-defined body shape or bilateral symmetry as seen in nematodes. Therefore, the description fits nematodes best.
Ibeere 27 Ìròyìn
The defect of the eye lens which occurs when the ciliary muscles are weak is
Awọn alaye Idahun
The defect of the eye lens that occurs when the ciliary muscles are weak is known as Presbyopia.
Here's a simple explanation:
The ciliary muscles in the eye are responsible for helping the lens to change shape so that you can focus on objects at different distances. As people age, the ciliary muscles may become weaker. This weakness hampers their ability to properly adjust the lens. As a result, the lens cannot accommodate or focus as effectively, especially when looking at nearby objects. This leads to a difficulty in seeing objects up close clearly, which is known as presbyopia.
Presbyopia is a natural condition associated with aging, and it typically becomes noticeable in people in their 40s or 50s. This is different from other eye conditions like:
So in summary, presbyopia is the condition that results from weakened ciliary muscles, affecting near vision as a person ages.
Ibeere 28 Ìròyìn
The quantity of heat required to melt ice of 0.2 kg whose specific latent heat is 3.4 x 105 J/Kg is
Awọn alaye Idahun
To determine the quantity of heat required to melt ice, we use the formula for latent heat:
Q = m × L,
where:
For this problem, we have:
Now, substitute these values into the formula:
Q = 0.2 kg × 3.4 × 105 J/kg
Calculate the product:
Q = 0.68 × 105 J
To express this in standard scientific notation, it can be rewritten as:
Q = 6.8 × 104 J
Thus, the quantity of heat required to melt 0.2 kg of ice is 6.8 × 104 J.
Ibeere 29 Ìròyìn
The force of attraction between molecules of the same substance is
Awọn alaye Idahun
The force of attraction between molecules of the same substance is called cohesion.
To understand this simply:
Cohesion refers to the attractive forces acting between similar molecules. For example, water molecules attract each other due to hydrogen bonding, which is a strong intermolecular force.
Let's break down some important concepts:
In summary, **cohesion** is the force that keeps the molecules of the same substance, like water, attracting each other.
Ibeere 30 Ìròyìn
Bifocal lens is used to correct the eye defect of
Awọn alaye Idahun
Bifocal lenses are primarily used to correct the eye defect known as presbyopia. As people age, the lens of the eye naturally loses its flexibility, making it difficult to focus on objects that are close up. This condition is known as presbyopia. A bifocal lens is designed with two different optical powers to accommodate this need. The upper part of the lens is usually crafted for distance vision, while the lower segment is designed for near vision tasks, such as reading.
Astigmatism is a different eye condition caused by irregular curvature of the cornea or lens, resulting in blurred or distorted vision at all distances. This condition is typically corrected with cylindrical lenses rather than bifocals.
Hypermetropia, commonly known as farsightedness, is a condition where distant objects can be seen more clearly than near ones. Simple convex lenses are usually used for this correction.
Myopia, or nearsightedness, is a condition where nearby objects are seen clearly, while distant objects appear blurry. Concave lenses are generally used to correct this condition.
In summary, bifocal lenses are specifically designed to address the challenges of focusing at different distances simultaneously, making them ideal for managing presbyopia.
Ibeere 31 Ìròyìn
How much joules of heat are given out when a piece of iron, of mass 60g and specific heat capacity 460JKg−1 K−1 , cools from 75ºC to 35ºC
Awọn alaye Idahun
To find out how much heat is given out when the piece of iron cools down, we can use the formula for heat transfer:
Q = mcΔT
Where:
First, let's list the values given and convert the mass from grams to kilograms:
Now, calculate the change in temperature:
ΔT = final temperature - initial temperature = 35ºC - 75ºC = -40ºC
Note: Since we are calculating the heat given out as the iron cools, the temperature change will be negative, which will make Q positive, indicating heat is released.
Substitute these values into the heat transfer formula:
Q = mcΔT = (0.06 kg) x (460 J/Kg·K) x (-40ºC)
Q = 0.06 x 460 x -40
Q = -1104 Joules
Since the question asks for how much heat is given out, we consider the positive value of Q, which is 1104J. Therefore, 1104J of heat is given out when the piece of iron cools from 75ºC to 35ºC.
Ibeere 32 Ìròyìn
The simple form of the lead acid accumulator often has a negative pole of
Awọn alaye Idahun
The simple form of the lead acid accumulator often has a negative pole of lead plate. In a lead-acid battery, the key components include two electrodes and an electrolyte. The **negative pole**, also known as the cathode during discharge, is typically made of **lead (Pb)**, which is in the form of a **lead plate**. When the battery is in use or discharging, this lead reacts with sulphuric acid (the electrolyte) to create lead sulfate.
To break it down further:
Thus, by analyzing the composition and reactions within a lead-acid battery, it is clear that the **negative pole** is made from a **lead plate**.
Ibeere 33 Ìròyìn
The energy of light of frequency 2.0 x 1015 Hz is (h = 6.63 x 10−34 Js)
Awọn alaye Idahun
To determine the energy of light given its frequency, we can utilize the formula:
E = h × f
Where:
E is the energy of the photon in joules (J)
h is Planck's constant, approximately 6.63 × 10-34 J·s
f is the frequency of light in hertz (Hz)
Given the frequency f = 2.0 × 1015 Hz, we can substitute the known values into our equation:
E = 6.63 × 10-34 J·s × 2.0 × 1015 Hz
To simplify the calculation, multiply the numerical parts and then add the indices of 10:
E = (6.63 × 2.0) × (10-34 × 1015)
E = 13.26 × 10-19 J
This can be approximated to 1.33 × 10-18 J. Thus, the energy of light with the given frequency is 1.33 × 10-18 J.
Ibeere 34 Ìròyìn
Using the circuit above, at resonance
Awọn alaye Idahun
To understand the concept of resonance in an electrical circuit, it is crucial to know that resonance occurs when the inductive reactance and capacitive reactance are equal in magnitude. This typically happens in a series RLC (Resistor, Inductor, Capacitor) circuit. At resonance, the impedance of the circuit is purely resistive, meaning the circuit behaves as if it only contains a resistor. As a result, the voltages across the inductor and capacitor can be compared at resonance.
In this particular situation, the voltage across the inductor (VL) and the voltage across the capacitor (VC) are of interest due to their roles in resonance:
Thus, the correct expression of interest in relation to resonance is VL = VC, which indicates that the voltage across the inductor is equal in magnitude but opposite in phase to the voltage across the capacitor.
Ibeere 35 Ìròyìn
The changes of living organisms over generation is referred to as
Awọn alaye Idahun
The changes of living organisms over generations are referred to as organic evolution.
Organic evolution, also known as biological evolution, is the process through which species of organisms undergo changes over time due to genetic variations and environmental factors. This leads to the development of new traits and, over long periods, may result in the emergence of new species.
Here's a simple breakdown of the concept:
This process is a key concept in biology and is fundamental to understanding the diversity of life on Earth. Organic evolution is distinct from other kinds of evolution mentioned, as it specifically deals with biological organisms.
Ibeere 36 Ìròyìn
Use the diagram above to answer the question that follows
The diagram above is
Awọn alaye Idahun
The diagram in the image represents the urinary system, as indicated by the correct answer. The urinary system includes the kidneys, ureters, bladder, and urethra, which are responsible for filtering blood and excreting waste in the form of urine.
Kidneys – Filter waste and excess fluids from the blood to form urine.
Ureters – Tubes that carry urine from the kidneys to the bladder.
Urinary Bladder – Stores urine before it is expelled from the body.
Urethra – A tube that allows urine to exit the body.
This system plays a crucial role in maintaining the body's fluid balance and removing waste products.
Ibeere 37 Ìròyìn
The acceleration of a free fall due to gravity is not a constant everywhere on the Earth's surface because
Awọn alaye Idahun
The elliptical shape of the Earth: The Earth is not a perfect sphere; it is slightly flattened at the poles and bulging at the equator. This shape causes variations in gravitational acceleration.
Ibeere 38 Ìròyìn
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Awọn alaye Idahun
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Ibeere 39 Ìròyìn
Which of the following operates based on magnetic effect of electric current?
Awọn alaye Idahun
The device that operates based on the magnetic effect of electric current is the Dynamo.
To explain further, let's look at the concept of the magnetic effect of electric current:
A Dynamo is a device that converts mechanical energy into electrical energy. It operates based on the phenomenon called electromagnetic induction, which occurs due to the magnetic effect of electric current. When a coil of wire within the dynamo rotates in the presence of a magnetic field, it induces an electric current in the coil. Thus, the operation of a dynamo relies on the interaction between electric current and magnetic fields.
To contrast with other options:
Ibeere 40 Ìròyìn
Rainbow is formed when sunlight undergoes
Awọn alaye Idahun
A rainbow is formed through a combination of three processes: reflection, refraction, and dispersion. Let's break down each process to understand how a rainbow forms:
1. Refraction: When sunlight enters a raindrop, it bends or changes direction. This bending of light is known as **refraction**. Different colors of sunlight bend by different amounts because they have different wavelengths.
2. Reflection: Once inside the raindrop, the light gets reflected off the inside surface of the drop. This reflection sends the light back out of the raindrop at different angles.
3. Dispersion: As the light exits the raindrop, it bends again (refraction). Because each color bends by a different amount, the sunlight is spread out into its component colors, creating a spectrum. This spreading into a spectrum is called **dispersion**.
All three processes contribute to the formation of a rainbow. The combination of **refraction, reflection, and dispersion** results in the beautiful arc of colors that we see in the sky.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?