Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
The following are some units
I. Ns
II. Non
III. Nm−2
IV. J°K−1
V. JKj−1
What are the units of latent heat?
Awọn alaye Idahun
Latent heat or specific latent heat = L
Heat | energy | = | mL | or | L | = | Hm | = | energymass |
Ibeere 2 Ìròyìn
Which of the following is/are the limitations to the Rutherford's atomic models?
I. It is applicable when energy is radiated as electrons are revolving
II. It is applicable when energy is radiated in a continuous mode
III. It is applicable to an atom with only one electron in the other shell
Awọn alaye Idahun
Rutherford assumed that (I) energy is radiated when electrons are revolving (II) energy is radiated in a continuous mode. These are limitations of Rutherford's model
Ibeere 3 Ìròyìn
A car moving at 20m/s with its horn blowing (f = 1200Hz) is chasing another car going at 15m/s. What is the apparent frequency of the horn as heard by the driver being chased?
Awọn alaye Idahun
f1 | = | f(v - vo )v - vs | = | 1200(340 - 15)340 - 20 | = | 1.22KHz |
Ibeere 4 Ìròyìn
Which of the following statement about the electromagnet shown above is correct?
Awọn alaye Idahun
A - B = S - N.
Also, starting end of the current is south while terminating end is North.
Ibeere 5 Ìròyìn
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Awọn alaye Idahun
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Ibeere 7 Ìròyìn
Which of the following bodies, each with centre of gravity G, lying on a horizontal table, is/are in unstable equilibrium?
Awọn alaye Idahun
- I and II are in neutral equilibrium. They will roll continuously on the table
- III is a body with high centre of gravity (unstable)
- IV is a body with high centre of gravity (stable)
Ibeere 8 Ìròyìn
Which of the following statements is/are correct for a freely falling body?
I. the total is entirely kinetic
II. the ratio of potential energy to kinetic energy is constant
III. the sum of potential and kinetic energy is constant
Awọn alaye Idahun
The correct answer is "III only". A freely falling body is one that is falling under the influence of gravity and experiences no other force or constraint. In this situation, the total energy of the body is conserved, meaning that the sum of its potential and kinetic energy remains constant. The potential energy of a body is directly proportional to its height above the ground, and its kinetic energy is directly proportional to its velocity. As the body falls, its potential energy decreases and its kinetic energy increases, but the total energy remains constant. Statement III is correct because the sum of potential and kinetic energy is indeed constant for a freely falling body. Statement I is incorrect because the body has both potential and kinetic energy, so the total energy is not entirely kinetic. Statement II is incorrect because the ratio of potential energy to kinetic energy is not constant for a freely falling body, as both are changing as the body falls.
Ibeere 9 Ìròyìn
Gases conduct electricity under
Awọn alaye Idahun
Gases conduct electricity under low pressure and high voltage
Ibeere 10 Ìròyìn
The Earth's magnetic equator passes through Jos in Nigeria. At Jos, the
Awọn alaye Idahun
The Earth has a magnetic field that is generated by the movement of molten iron in its core. The magnetic field has different properties at different locations on the Earth's surface. The magnetic equator is an imaginary line on the Earth's surface where the inclination or tilt of the Earth's magnetic field is zero, meaning that the magnetic field lines are parallel to the Earth's surface. At Jos, Nigeria, the Earth's magnetic equator passes through, which means that the angle of inclination or dip of the Earth's magnetic field is zero. Therefore, the correct answer is that the angle of dip is zero. This means that a magnetic needle suspended by a thread or placed on a horizontal surface would remain horizontal and not point downwards or upwards, as it would at other locations on the Earth's surface. This makes Jos an important location for studying the Earth's magnetic field and for conducting experiments related to magnetism.
Ibeere 11 Ìròyìn
In Sunlight, a blue flower looks blue because we see the flower by the light it
Awọn alaye Idahun
In sunlight, a blue flower looks blue because it reflects blue light. When sunlight falls on an object, the object can either absorb, transmit, or reflect the light. The color of an object that we see is determined by the light that is reflected by that object. For example, if an object appears blue, it is because it reflects blue light and absorbs other colors. In the case of a blue flower in sunlight, the petals of the flower reflect blue light and absorb other colors. This reflected blue light enters our eyes, and our brain interprets it as the color blue. Therefore, we see the blue flower as blue because it reflects blue light, and that is the color that enters our eyes. In summary, the reason why a blue flower looks blue in sunlight is that it reflects blue light and absorbs other colors.
Ibeere 12 Ìròyìn
The following are parts of the eye
I. Retina
II. Pupil
III. Iris
The correct equivalent in the camera in the same order are
Awọn alaye Idahun
- retina is similar to film
- pupil is similar to aperture
- iris is similar to diaphragm
Ibeere 13 Ìròyìn
Which of the following statements are correct of the production and propagation of waves?
I. vibration produces waves
II. waves transmit energy along the medium
III. the medium through which the wave travels does not travel with the wave
IV. waves do not require any medium for transmission
Awọn alaye Idahun
The correct statement is: I and II and III only. Explanation: - Statement I is correct because the production of waves involves some kind of disturbance that creates a vibration in the medium, which then propagates as a wave. - Statement II is correct because waves carry energy along the medium as they propagate. This is why waves can be used to transmit information or power over long distances. - Statement III is correct because the medium through which a wave travels does not move with the wave. Instead, the wave passes through the medium, causing it to oscillate or vibrate, but not to move along with the wave. - Statement IV is incorrect because most waves require a medium through which to propagate. For example, sound waves require air, water waves require water, and seismic waves require the Earth's crust. There are some types of waves, such as electromagnetic waves, that can propagate through a vacuum, but this is not true for all waves.
Ibeere 14 Ìròyìn
Which of the following is consistent with Charles' law?
I
II
III
IV.
Awọn alaye Idahun
This is the correct graph. The graph is volume against 1/ temperature where temperature is in Celsius.
Ibeere 15 Ìròyìn
The lower fixed part of a faulty thermometer reads 2°C while the upper fixed point is 100°C.
What is the true temperature when the thermometer reads 51°C?
Awọn alaye Idahun
Since the thermometer is faulty, it is not measuring the temperature accurately. To find the true temperature, we need to determine the extent of the error in the thermometer. We can do this by comparing the difference between the lower fixed point and the reading with the difference between the upper fixed point and the true temperature. Since the lower fixed point reads 2°C and the upper fixed point reads 100°C, and the thermometer reading is 51°C, we can calculate the error as follows: True temperature = (51°C - 2°C) / (51°C - 2°C) * (100°C - 51°C) + 51°C = 50°C So, the true temperature when the thermometer reads 51°C is 50°C, which is option B.
Ibeere 16 Ìròyìn
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Awọn alaye Idahun
n = 200, S = 132 rev/min, v = 350m/s2
f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
λ | = | vf | = | 350440 | = | 0.875m |
Ibeere 17 Ìròyìn
A ray of light passes through the centre of curvature of a concave mirror and strikes the mirror. At what angle is the ray reflected?
Awọn alaye Idahun
When a light ray passes through the center of curvature of a concave mirror and strikes the mirror, the reflected ray will be reflected back on itself, creating an angle of 0 degrees. Therefore, the correct answer is 0o.
Ibeere 18 Ìròyìn
A straight wire 15cm long, carrying a current of 6.0A is in a uniform field of 0.40T. What is the force on the wire when it is at right angle to the field
Awọn alaye Idahun
The force on a current-carrying wire in a uniform magnetic field can be calculated using the equation: F = BILsinθ where F is the force in Newtons, B is the magnetic field strength in Tesla, I is the current in Amperes, L is the length of the wire in meters, and θ is the angle between the wire and the magnetic field. In this problem, the wire is 15cm long (0.15m), carrying a current of 6.0A, and the magnetic field is 0.40T. The angle between the wire and the magnetic field is 90 degrees (since the wire is at right angles to the field). Substituting the given values into the equation, we get: F = (0.40T)(6.0A)(0.15m)sin90 sin90 = 1, so we can simplify the equation to: F = (0.40T)(6.0A)(0.15m) F = 0.36N Therefore, the force on the wire is 0.36N. Answer option C is the correct answer.
Ibeere 19 Ìròyìn
In the molecular explanation of conduction, heat is transferred by the
Awọn alaye Idahun
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Ibeere 20 Ìròyìn
The distance between an object and its real image in a convex lens is 40cm. If the magnification of the image is 3, calculate the focal length of the lens
Awọn alaye Idahun
u + v = 40
vu = 3
v = 3u
u + 3u = 40
4u = 40
u = 10cm
v = 3u = 30cm
f = uvu+v=10(30)10+30=30040
= 7.5 cm
Ibeere 21 Ìròyìn
A copper rod, 5m long when heated through 20c, expands by 1mm. If a second copper rod, 2.5m long is heated through 5c, by how much will it expand?
Awọn alaye Idahun
l1
= 5m, ΔT = 10c, l2
- l1
= 1mm
l1
= 2.5m, ΔT = 5c, l2
- l1
= ?
using | α | = | l2 - l1 l1 ΔT |
15(10) | = | l2 - l1 2.5(5) |
l2 | - | l2 | = | 2.5(5)5(10) | = | 14 | = | 0.25mm |
Ibeere 22 Ìròyìn
The part of the human eye that does similar work as the diaphragm of a camera lens is the
Awọn alaye Idahun
The part of the human eye that does similar work as the diaphragm of a camera lens is the iris. The iris is the colored part of the eye and is responsible for controlling the amount of light that enters the eye. Just like the diaphragm in a camera lens, the iris can adjust its size to allow more or less light into the eye. This helps to regulate the amount of light reaching the retina, which is responsible for sensing light and transmitting the image to the brain.
Ibeere 23 Ìròyìn
Workdone on an object to bring it to a certain point in space is called
Awọn alaye Idahun
The work done on an object to bring it to a certain point in space is called "Potential Energy". Potential energy is a form of energy that an object possesses due to its position relative to other objects. When an object is lifted or moved to a higher point against gravity, work is done on it, and this work is stored as potential energy. The potential energy of an object is directly proportional to its height and mass. It can be converted into other forms of energy, such as kinetic energy, when the object is released or allowed to move freely. Therefore, potential energy is a type of stored energy that an object has due to its position, and it can be released to do work.
Ibeere 24 Ìròyìn
A mass of 0.5kg is whirled in a vertical circle of radius 2m at a steady rate of 2 rev/s. Calculate the centripetal force
Awọn alaye Idahun
The centripetal force is the force that acts towards the center and keeps an object moving in a circular path. To calculate the centripetal force, we can use the following formula: f = m * v^2 / r where: - f = centripetal force - m = mass of the object (0.5 kg) - v = velocity of the object (2 rev/s * 2 * pi m/rev = 12.57 m/s) - r = radius of the circle (2 m) Plugging in the values, we get: f = 0.5 kg * 12.57 m/s^2 / 2 m f = 31.43 N Rounding to the nearest whole number, the centripetal force is 31 N. So, the closest answer from the options is 160N.
Ibeere 25 Ìròyìn
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is
Awọn alaye Idahun
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is called the yield point. At this point, the material no longer behaves elastically and becomes permanently deformed. The yield point is an important parameter in material science and engineering as it indicates the maximum stress a material can withstand before it begins to deform plastically. Therefore, the yield point is a critical factor to consider when designing materials for specific applications.
Ibeere 26 Ìròyìn
Ripple in a power supply unit is caused by
Awọn alaye Idahun
The correct option is "Using a zener diode" as fluctuation of d.c signal results from the rectification of a.c to d.c.
Ibeere 27 Ìròyìn
An alternating current can induce voltage because it has
Awọn alaye Idahun
An alternating current can induce voltage because it has a varying magnetic field. An alternating current (AC) is an electrical current that periodically reverses direction, unlike direct current (DC), which flows in one direction. When an AC current flows through a wire, it generates a magnetic field that changes direction with the current. As the current alternates, the magnetic field expands and contracts, inducing an electromotive force (EMF) in any nearby conductor or coil of wire. This phenomenon is known as electromagnetic induction, and it is the basis for the operation of many electrical devices, such as generators and transformers. The induced voltage depends on the strength and rate of change of the magnetic field and the number of turns in the coil. In summary, an alternating current can induce voltage because it creates a varying magnetic field, which in turn generates an electromotive force in nearby conductors or coils of wire, according to the principle of electromagnetic induction.
Ibeere 28 Ìròyìn
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Awọn alaye Idahun
If a body moves with a constant speed but at the same time undergoes an acceleration, its motion is called rectilinear motion. This means that the body moves in a straight line and its speed changes at a constant rate, causing an acceleration. It is different from oscillation, circular and rotational motions which involve changes in direction, as well as changes in speed.
Ibeere 30 Ìròyìn
According to kinetic molecular model, in gases
Awọn alaye Idahun
In kinetic molecular model, gases are energised and thus moves freely, fast as they occupy specific space
Ibeere 31 Ìròyìn
The resultant capacitance in the figure above is
Awọn alaye Idahun
For the parallel arrangement = 2 + 4 = 6μf
For | the | series | arrangement | = | 1CT | = | 12 | + | 13 | + | 16 | + | 14 |
1CT | = | 1512 |
CT | = | 1215 | = | 0.8μf |
Ibeere 32 Ìròyìn
When water is boiling, it
Awọn alaye Idahun
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Ibeere 33 Ìròyìn
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Awọn alaye Idahun
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Ibeere 34 Ìròyìn
The equilibrium position of objects in any field corresponds to situation of
Awọn alaye Idahun
The equilibrium position of an object in any field corresponds to the situation of minimum potential energy. This means that at the equilibrium position, the object has the lowest possible potential energy within the field. In other words, the forces acting on the object are balanced, and the object is not being pushed or pulled in any direction. Therefore, the object will remain at rest at the equilibrium position unless it is acted upon by an external force. Of the options given, the correct answer is "minimum potential energy".
Ibeere 35 Ìròyìn
A man on a bench will exert the greatest pressure on the bench when he
Awọn alaye Idahun
The man on the bench will exert the greatest pressure when he stands on the toes of one foot. This is because when he stands on one foot, all his weight is concentrated on a smaller surface area of the bench, resulting in more pressure. The pressure he exerts is calculated by dividing his weight by the surface area in contact with the bench. When he stands on one foot, the surface area is smaller, which means the pressure exerted is greater. In comparison, when he lies flat on his back or belly, or when he stands on both feet, his weight is distributed over a larger surface area, resulting in less pressure.
Ibeere 37 Ìròyìn
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Awọn alaye Idahun
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Ibeere 38 Ìròyìn
A cone is in unstable equilibrium has its potential energy
Awọn alaye Idahun
In unstable equilibrium, potential energy decreases as the height decreases.
Ibeere 39 Ìròyìn
A rectangular solid black has length 10cm, breadth 5cm and height 2cm. If it lies on a horizontal surface, and has density 100kg/m3 , calculate the pressure it exerts on the surface.
Awọn alaye Idahun
To calculate the pressure that the rectangular solid exerts on the surface, we need to use the formula for pressure: Pressure = Force / Area In this case, the force is the weight of the rectangular solid, which we can calculate using the formula: Weight = Mass x Gravity The mass of the rectangular solid can be calculated using its density and volume: Mass = Density x Volume The volume of the rectangular solid is simply its length x breadth x height: Volume = Length x Breadth x Height = 10 cm x 5 cm x 2 cm = 100 cm3 We need to convert this volume to cubic meters to use the density given in kg/m3: Volume = 100 cm3 = 0.0001 m3 Now we can calculate the mass: Mass = Density x Volume = 100 kg/m3 x 0.0001 m3 = 0.01 kg The gravity is the acceleration due to gravity, which we can assume to be 9.81 m/s2. Therefore, the weight is: Weight = Mass x Gravity = 0.01 kg x 9.81 m/s2 = 0.0981 N Now we can use this weight to calculate the pressure on the surface. The surface area in contact with the rectangular solid is simply its length x breadth: Area = Length x Breadth = 10 cm x 5 cm = 50 cm2 We need to convert this area to square meters: Area = 50 cm2 = 0.005 m2 Therefore, the pressure is: Pressure = Force / Area = 0.0981 N / 0.005 m2 = 19.62 N/m2 We can convert this to units of N/cm2 or N/mm2 if desired. This is equivalent to: Pressure = 0.1962 N/cm2 = 0.0001962 N/mm2 So the pressure that the rectangular solid exerts on the surface is 19.62 N/m2, which is approximately 20 N/m2. Therefore, the answer is 200 N/m2.
Ibeere 40 Ìròyìn
Radio waves belongs to the class of ware whose velocity is about
Awọn alaye Idahun
Radio waves belong to the class of waves whose velocity is approximately 3 x 10^8 m/s. This velocity is commonly denoted as the speed of light, which is the speed at which all electromagnetic waves, including radio waves, travel in a vacuum. This constant velocity is one of the fundamental principles of physics and is important in understanding the behavior and properties of light and other electromagnetic waves. The speed of light is incredibly fast, and it's difficult for us to imagine just how fast it is. To put it into perspective, light can travel around the Earth's equator almost 7.5 times in just one second. This high speed is essential for radio communication, as it enables radio waves to travel long distances in a short amount of time, allowing us to communicate with people and devices far away from us.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?