Nkojọpọ....
|
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
|
Tẹ ibi lati pa |
|||
Ibeere 1 Ìròyìn
A ray of light passes through the centre of curvature of a concave mirror and strikes the mirror. At what angle is the ray reflected?
Awọn alaye Idahun
When a light ray passes through the center of curvature of a concave mirror and strikes the mirror, the reflected ray will be reflected back on itself, creating an angle of 0 degrees. Therefore, the correct answer is 0o.
Ibeere 3 Ìròyìn
The Earth's magnetic equator passes through Jos in Nigeria. At Jos, the
Awọn alaye Idahun
The Earth has a magnetic field that is generated by the movement of molten iron in its core. The magnetic field has different properties at different locations on the Earth's surface. The magnetic equator is an imaginary line on the Earth's surface where the inclination or tilt of the Earth's magnetic field is zero, meaning that the magnetic field lines are parallel to the Earth's surface. At Jos, Nigeria, the Earth's magnetic equator passes through, which means that the angle of inclination or dip of the Earth's magnetic field is zero. Therefore, the correct answer is that the angle of dip is zero. This means that a magnetic needle suspended by a thread or placed on a horizontal surface would remain horizontal and not point downwards or upwards, as it would at other locations on the Earth's surface. This makes Jos an important location for studying the Earth's magnetic field and for conducting experiments related to magnetism.
Ibeere 5 Ìròyìn
The height at which the atmosphere cases to exist is about 80km. If the atmospheric pressure on the ground level is 760mmHg, the pressure at a height of 20km above the ground level is
(ρm = 13.6g/cm3 ρ = 0.00013g/cm3 )
Awọn alaye Idahun
ρm
hm
= ρa
ha
13.68(760 - p) × 10−3
= 13 × 10−5
(20 × 103
)
| 760 | - | p | = | 13 × 10−5 × 20 × 103 13.68 × 10−3 | = | 19.00 | × | 101 |
760 - p = 190
p = 760 - 190 = 570mmHg
Ibeere 6 Ìròyìn
The lower fixed part of a faulty thermometer reads 2°C while the upper fixed point is 100°C.
What is the true temperature when the thermometer reads 51°C?
Awọn alaye Idahun
Since the thermometer is faulty, it is not measuring the temperature accurately. To find the true temperature, we need to determine the extent of the error in the thermometer. We can do this by comparing the difference between the lower fixed point and the reading with the difference between the upper fixed point and the true temperature. Since the lower fixed point reads 2°C and the upper fixed point reads 100°C, and the thermometer reading is 51°C, we can calculate the error as follows: True temperature = (51°C - 2°C) / (51°C - 2°C) * (100°C - 51°C) + 51°C = 50°C So, the true temperature when the thermometer reads 51°C is 50°C, which is option B.
Ibeere 7 Ìròyìn
When the temperature of a liquid is increased, its surface tension
Awọn alaye Idahun
Surface tension or elasticity of a fluid decreases with increased in temperature
Ibeere 8 Ìròyìn
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce temperature increase because
Awọn alaye Idahun
When a solid is heated to its melting point, the heat supplied is used to overcome the intermolecular forces holding the molecules in a fixed position, resulting in the breaking of these bonds. As a result, the solid transforms into a liquid without any change in temperature. This is because the heat energy supplied is used in breaking the bonds between molecules rather than increasing the kinetic energy of the molecules, which is what causes an increase in temperature. Therefore, the correct option is: "all the heat is used to break the bonds holding the molecules of the solid together."
Ibeere 9 Ìròyìn
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Awọn alaye Idahun
| v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
| v | = | 2 × 4x | = | 8 | ms |
Ibeere 10 Ìròyìn
If the time of flight is 96seconds, calculate the horizontal range through the point of projection.
Awọn alaye Idahun
Time of flight, T = 96s
R = (Ucosθ) *time* T = 640 × 96 = 61,440m
Ibeere 11 Ìròyìn
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Awọn alaye Idahun
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Ibeere 12 Ìròyìn
A supply of 400V is connected across capacitors of 3μf and 6μf in series. Calculate the charge
Awọn alaye Idahun
| CT | = | C1 × C2 C1 + C2 |
| = | 3 × 63 + 6 |
= 189
= 2μf
Q = CV
⇒ 2 × 10−6
× 400
⇒ 800 × 10−6
C = 8 × 10−4
C
Ibeere 13 Ìròyìn
Efficiency of conduction in liquids and gases compared to solids is
Awọn alaye Idahun
The efficiency of conduction in liquids and gases compared to solids is generally less efficient. This means that solids are better conductors of heat and electricity than liquids and gases. This is because the particles in solids are closely packed and are tightly bound to one another, allowing heat and electricity to flow easily through the material. On the other hand, the particles in liquids and gases are more spread out and less tightly bound, making it more difficult for heat and electricity to flow through these materials. However, it is important to note that the efficiency of conduction can vary depending on the specific liquid or gas and the specific solid being compared. Some liquids and gases may have properties that make them better conductors than certain solids, but this is not a general rule.
Ibeere 14 Ìròyìn
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Awọn alaye Idahun
If a body moves with a constant speed but at the same time undergoes an acceleration, its motion is called rectilinear motion. This means that the body moves in a straight line and its speed changes at a constant rate, causing an acceleration. It is different from oscillation, circular and rotational motions which involve changes in direction, as well as changes in speed.
Ibeere 15 Ìròyìn
Which of the following media allow the transmission of sound waves through them?
I. air
II. liquid
III. solids
Awọn alaye Idahun
Sound waves are disturbances in a medium that propagate through the medium and transfer energy from one point to another. The transmission of sound waves depends on the physical properties of the medium, including its elasticity and density. Air (Option I) is a gas that is compressible and has a relatively low density, which makes it an excellent medium for transmitting sound waves. Liquids (Option II) are also able to transmit sound waves, although the speed of sound in liquids is slower than in gases because liquids are more dense and less compressible. Solids (Option III) are able to transmit sound waves as well, but their density and elasticity make them more rigid, which means that sound waves in solids tend to be transmitted as elastic waves or mechanical waves, rather than as acoustic waves. Therefore, the correct answer is "I, II, and III".
Ibeere 16 Ìròyìn
Heat may be transferred by conduction, convention and radiation. By which of these methods does heat travel through vacuum?
Awọn alaye Idahun
Heat can be transferred by conduction, convection, and radiation. Conduction is the transfer of heat through a material by the movement of heat-carrying particles, such as atoms or molecules, from one part of the material to another. This method of heat transfer is not possible in a vacuum, as there are no particles present to carry heat. Convection is the transfer of heat by the movement of a fluid, such as air or water. This method of heat transfer is also not possible in a vacuum, as there are no fluids present to carry heat. Radiation is the transfer of heat through electromagnetic waves, such as light or infrared radiation. This method of heat transfer does not require any material or fluid medium, and can therefore occur in a vacuum. Therefore, the answer is "Radiation only".
Ibeere 17 Ìròyìn
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because
Awọn alaye Idahun
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because all the heat is used to break the bonds holding the molecules of the solid together
Ibeere 18 Ìròyìn
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Awọn alaye Idahun
all the parallel forces must be equal in magnitude and direction
Ibeere 19 Ìròyìn
An alternating current can induce voltage because it has
Awọn alaye Idahun
An alternating current can induce voltage because it has a varying magnetic field. An alternating current (AC) is an electrical current that periodically reverses direction, unlike direct current (DC), which flows in one direction. When an AC current flows through a wire, it generates a magnetic field that changes direction with the current. As the current alternates, the magnetic field expands and contracts, inducing an electromotive force (EMF) in any nearby conductor or coil of wire. This phenomenon is known as electromagnetic induction, and it is the basis for the operation of many electrical devices, such as generators and transformers. The induced voltage depends on the strength and rate of change of the magnetic field and the number of turns in the coil. In summary, an alternating current can induce voltage because it creates a varying magnetic field, which in turn generates an electromotive force in nearby conductors or coils of wire, according to the principle of electromagnetic induction.
Ibeere 20 Ìròyìn
The part of the human eye that does similar work as the diaphragm of a camera lens is the
Awọn alaye Idahun
The part of the human eye that does similar work as the diaphragm of a camera lens is the iris. The iris is the colored part of the eye and is responsible for controlling the amount of light that enters the eye. Just like the diaphragm in a camera lens, the iris can adjust its size to allow more or less light into the eye. This helps to regulate the amount of light reaching the retina, which is responsible for sensing light and transmitting the image to the brain.
Ibeere 21 Ìròyìn
Gases conduct electricity under
Awọn alaye Idahun
Gases conduct electricity under low pressure and high voltage
Ibeere 22 Ìròyìn
According to kinetic molecular model, in gases
Awọn alaye Idahun
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Ibeere 23 Ìròyìn
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Awọn alaye Idahun
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
| P1 V1 T1 | = | P2 V2 T1 |
| V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Ibeere 24 Ìròyìn
The mass of water vapour in a given volume of air is 0.05g at 20°C, while the mass of water vapour required to saturate it at the same temperature is 0.15g. Calculate the relative humidity of the air.
Awọn alaye Idahun
Relative humidity is a measure of how much water vapor the air is holding compared to the maximum amount it could hold at a given temperature. It is expressed as a percentage. To calculate the relative humidity of the air in this problem, we need to use the formula: Relative humidity = (mass of water vapor in air / mass of water vapor required for saturation) x 100% We are given that the mass of water vapor in the air is 0.05g and the mass of water vapor required for saturation at the same temperature is 0.15g. Plugging these values into the formula, we get: Relative humidity = (0.05 / 0.15) x 100% = 33.33% Therefore, the relative humidity of the air is 33.33%. So the answer is 33.33%.
Ibeere 25 Ìròyìn
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is
Awọn alaye Idahun
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is called the yield point. At this point, the material no longer behaves elastically and becomes permanently deformed. The yield point is an important parameter in material science and engineering as it indicates the maximum stress a material can withstand before it begins to deform plastically. Therefore, the yield point is a critical factor to consider when designing materials for specific applications.
Ibeere 26 Ìròyìn
A mixture of blue and red pigment when illuminated by white light will appear
Awọn alaye Idahun
A mixture of blue and red pigment when illuminated by white light will appear purple. This is because when white light shines on a surface, it contains all the colors of the visible spectrum. When blue and red pigments are mixed together, they absorb all the other colors in the spectrum except for blue and red. Therefore, when white light shines on this mixture, the blue pigment absorbs all the colors except blue, while the red pigment absorbs all the colors except red. The result of this is that the blue and red pigments reflect only blue and red light, which then combines to form purple. Therefore, the mixture of blue and red pigments appears purple when illuminated by white light.
Ibeere 27 Ìròyìn
The mass of a nucleus is the
Awọn alaye Idahun
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Ibeere 28 Ìròyìn
A well 1km deep is filled with a liquid of density 950kg/m3 and g = 10m/s2 , the pressure at the bottom of the well is
Awọn alaye Idahun
P = Pa + ρgh = (1.00 × 105
) + (950 × 10 × 1000)
P = 105
+ (95 × 105
) = 105
(1 + 95) = 96 × 105
P = 9.6 × 106
N/m2
Ibeere 29 Ìròyìn
The pin-hole camera produces a less sharply defined image when the
Awọn alaye Idahun
The pin-hole camera produces a less sharply defined image when the pin-hole is larger. A pin-hole camera works by allowing light to pass through a small hole (the pin-hole) and project an inverted image of the outside world onto a screen or surface located behind the hole. The smaller the pin-hole, the sharper the resulting image, as light passing through a smaller hole produces less diffraction or spreading out of the light. When the pin-hole is larger, more light enters the camera, but the light rays also become more scattered, resulting in a less well-defined image. This is because the larger opening allows more light rays to enter at different angles, creating a wider range of paths that the light can take as it travels through the camera and onto the screen. As a result, the image is less clear and less defined, with less sharp edges and more blurring. is the correct answer because it correctly identifies the effect of a larger pin-hole on the image produced by the pin-hole camera. less illumination, would actually produce a dimmer image, but it would not affect the sharpness or definition of the image. the distance of the screen from the pin-hole, and the distance of the object from the pin-hole, would affect the size of the image and the scale of the objects, but they would not affect the sharpness or definition of the image.
Ibeere 30 Ìròyìn
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Awọn alaye Idahun
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Ibeere 31 Ìròyìn
The equilibrium position of objects in any field corresponds to situation of
Awọn alaye Idahun
The equilibrium position of an object in any field corresponds to the situation of minimum potential energy. This means that at the equilibrium position, the object has the lowest possible potential energy within the field. In other words, the forces acting on the object are balanced, and the object is not being pushed or pulled in any direction. Therefore, the object will remain at rest at the equilibrium position unless it is acted upon by an external force. Of the options given, the correct answer is "minimum potential energy".
Ibeere 32 Ìròyìn
Which of the following readings cannot be determined with a meter rule?
Awọn alaye Idahun
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Ibeere 33 Ìròyìn
A boy pushes a 500kg box along a floor with a force of 2000N. If the velocity of the box is uniform, the co-efficient of friction between the box and the floor is
Awọn alaye Idahun
The coefficient of friction is a measure of the amount of friction between two surfaces. It is represented by the symbol "μ" and is a dimensionless quantity. The coefficient of friction between two surfaces depends on the nature of the surfaces in contact and the force pressing them together. In this problem, the boy is pushing the box with a force of 2000N. If the box is moving with a uniform velocity, then the force of friction acting on the box is equal and opposite to the pushing force applied by the boy. We can calculate the force of friction using the formula: frictional force = coefficient of friction x normal force where the normal force is the force exerted by the floor on the box in a direction perpendicular to the floor. Since the box is not moving up or down, the normal force is equal to the weight of the box. The weight of the box can be calculated using the formula: weight = mass x gravity where mass is the mass of the box and gravity is the acceleration due to gravity (9.8 m/s^2). So, the weight of the box is: weight = 500 kg x 9.8 m/s^2 = 4900 N The force of friction is equal to the pushing force of 2000N, so we can set these two equal to each other and solve for the coefficient of friction: frictional force = 2000N coefficient of friction x normal force = 2000N coefficient of friction x 4900N = 2000N coefficient of friction = 2000N / 4900N = 0.408 So, the coefficient of friction between the box and the floor is approximately 0.4. Therefore, the correct answer is 0.4.
Ibeere 34 Ìròyìn
In Sunlight, a blue flower looks blue because we see the flower by the light it
Awọn alaye Idahun
In sunlight, a blue flower looks blue because it reflects blue light. When sunlight falls on an object, the object can either absorb, transmit, or reflect the light. The color of an object that we see is determined by the light that is reflected by that object. For example, if an object appears blue, it is because it reflects blue light and absorbs other colors. In the case of a blue flower in sunlight, the petals of the flower reflect blue light and absorb other colors. This reflected blue light enters our eyes, and our brain interprets it as the color blue. Therefore, we see the blue flower as blue because it reflects blue light, and that is the color that enters our eyes. In summary, the reason why a blue flower looks blue in sunlight is that it reflects blue light and absorbs other colors.
Ibeere 35 Ìròyìn
The momentum of a car moving at a constant speed in a circular track
Awọn alaye Idahun
Movement of an object in a circle with an acceleration towards its center is provided by change in velocity and centripetal force a α V α Fc
Ibeere 36 Ìròyìn
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Awọn alaye Idahun
n = 200, S = 132 rev/min, v = 350m/s2
| f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
| λ | = | vf | = | 350440 | = | 0.875m |
Ibeere 37 Ìròyìn
The diagram above represents the stress-strain graph of a loaded wire. Which of these statements is correct?
Awọn alaye Idahun
- I is the elastic limit
- the end of the constant part J is the yield point
- L is the break point.
Ibeere 38 Ìròyìn
A body was slightly displaced from its equilibrium position. Which one of the following is a condition for its stable equilibrium
Awọn alaye Idahun
The condition for stable equilibrium of a body that has been slightly displaced from its equilibrium position is "an increase in the potential energy of the body." When an object is at its equilibrium position, it has a minimum potential energy. When the object is displaced from its equilibrium position, it has a higher potential energy. For the object to be in stable equilibrium, it must be able to return to its equilibrium position after it has been displaced. If the potential energy of the object increases as it is displaced, it means that the equilibrium position is a point of stable equilibrium. This is because the object will experience a restoring force that will push it back towards its equilibrium position, as the potential energy decreases. Therefore, an increase in potential energy is a condition for a body to be in stable equilibrium after it has been slightly displaced from its equilibrium position. An increase in kinetic energy or height does not necessarily indicate stability, as it depends on the specific situation and other factors at play.
Ibeere 40 Ìròyìn
One newton × One meter equals?
Awọn alaye Idahun
One newton times one meter is equal to one Joule. A newton is the unit of measurement for force, and a meter is the unit of measurement for distance. When force is applied over a distance, work is done, which is measured in Joules. Therefore, one newton multiplied by one meter results in one Joule of work done. The other options listed (one water, one ampere, one kilogram) are not correct units of measurement for this calculation.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?