Nkojọpọ....
|
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
|
Tẹ ibi lati pa |
|||
Ibeere 1 Ìròyìn
Which of the following statements about catalyst is false?
Awọn alaye Idahun
The false statement about catalysts is: "catalysts do not alter the mechanism of the reaction and never appear in the rate law." Catalysts are substances that speed up chemical reactions without being consumed in the process. They achieve this by reducing the activation energy needed for the reaction to occur. Enzymes are a type of biological catalysts. In a chemical reaction, a catalyst is not consumed and does not appear in the overall balanced equation. However, catalysts can alter the mechanism of a reaction by providing an alternative pathway with a lower activation energy. This alternative pathway can have a different rate-determining step, which means that the presence of the catalyst can change the rate law of the reaction. Therefore, the statement that catalysts do not alter the mechanism of the reaction and never appear in the rate law is false.
Ibeere 2 Ìròyìn
Which of the following gases contains the least number of atoms at s.t.p?
Awọn alaye Idahun
At standard temperature and pressure (s.t.p), all gases have the same number of atoms or molecules. What changes between them is the volume they occupy, and this is dependent on their molecular mass and the number of moles. Comparing the number of moles between the gases listed above, 7 moles of argon will contain the most number of atoms, followed by 4 moles of chlorine, then 3 moles of ozone, and finally 1 mole of butane would contain the least number of atoms. In summary, the number of atoms in a gas sample depends on the number of moles, but at s.t.p, the volume occupied by each gas depends on its molecular mass and the number of moles.
Ibeere 3 Ìròyìn
Hydrocarbons which will react with Tollen's reagent conform to the general formula
Awọn alaye Idahun
Ibeere 4 Ìròyìn
What volume of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
[Na = 23, N = 14, O = 16]
Awọn alaye Idahun
To calculate the volume of a solution, we need to use the formula: moles of solute = concentration x volume First, let's find the number of moles of sodium trioxonitrate (V) in 5g of the solute. The molar mass of NaNO3 is: Na = 23 N = 14 3 x O = 3 x 16 = 48 Molar mass = 23 + 14 + 48 = 85 g/mol The number of moles of NaNO3 in 5g is: moles = mass / molar mass = 5 / 85 = 0.0588 moles Now, we can use the formula above to find the volume of the solution: moles of solute = concentration x volume volume = moles of solute / concentration volume = 0.0588 moles / 0.100 M volume = 0.588 litres Therefore, the correct answer is 0.588 litres of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
Ibeere 5 Ìròyìn
The velocity, V of a gas is related to its mass, M by (k = proportionality constant)
Awọn alaye Idahun
Recall:
V = √3RTM
∴V∝1√M
V=k√M
V = kM12
Ibeere 6 Ìròyìn
When ammonia and hydrogen ion bond together to form ammonium ion, the bond formed is called
Awọn alaye Idahun
When ammonia and hydrogen ion go into bonding, they form ammonium ion by combining with a dative/coordinate covalent bond.
Ibeere 7 Ìròyìn
When the end alkyl groups of ethyl ethanoate are interchanged, the compound formed is
Awọn alaye Idahun
The compound formed when the end alkyl groups of ethyl ethanoate are interchanged is ethyl propanoate. This is because ethyl ethanoate consists of two parts: the "ethyl" group and the "ethanoate" group. The ethyl group is a two-carbon chain, and the ethanoate group is a combination of a one-carbon chain and a carbonyl group (C=O) that is also attached to an oxygen atom. When the end alkyl groups are interchanged, the "ethyl" group is moved from the second carbon to the first carbon of the ethanoate group, and the "propanoate" group is formed. The "propanoate" group consists of a three-carbon chain and the carbonyl group. Therefore, the resulting compound is ethyl propanoate, which has a chemical formula of CH3CH2COOCH2CH3. This compound is commonly used as a flavoring agent and has a fruity odor reminiscent of pears.
Ibeere 8 Ìròyìn
At 27°C, 58.5g of sodium chloride is present in 250cm3 of a solution. The solubility of sodium chloride at this temperature is?
(molar mass of sodium chloride = 111.0gmol−1 )
Awọn alaye Idahun
Given the Mass of the salt = 58.5g
Volume = 250 cm3
= 0.25 dm3
Mass concentration = MassVolume
= 58.50.25
= 234 gdm−3
Solubility (in moldm−3
= 234111
= 2.11 moldm−3
≊
2.0 moldm−3
Ibeere 9 Ìròyìn
The shapes of water, ammonia, carbon (iv) oxide and methane are respectively
Awọn alaye Idahun
Ibeere 10 Ìròyìn
Methane is prepared in the laboratory by heating a mixture of sodium ethanoate with soda lime. The chemical constituent(s) of soda lime is/are
Awọn alaye Idahun
The chemical constituent of soda lime used to prepare methane in the laboratory is Ca(OH)2 (calcium hydroxide) and NaOH (sodium hydroxide). Soda lime is a mixture of these two compounds. When sodium ethanoate (NaC2H3O2) is heated with soda lime, it undergoes a reaction known as the Kolbe's reaction, which produces methane gas (CH4) as one of the products. The reaction can be represented as follows: 2NaC2H3O2 + 2Ca(OH)2 → 2CH4 + 2NaOH + 2CaCO3 In this reaction, the sodium ethanoate reacts with the calcium hydroxide to form calcium acetate (Ca(C2H3O2)2) and sodium hydroxide. The calcium acetate then decomposes to produce methane gas and calcium carbonate (CaCO3), which is a solid precipitate. Therefore, the chemical constituents of soda lime used to prepare methane in the laboratory are calcium hydroxide (Ca(OH)2) and sodium hydroxide (NaOH).
Ibeere 11 Ìròyìn
Hydrogen diffused through a porous plug
Awọn alaye Idahun
Hydrogen gas (H2) diffuses faster than oxygen gas (O2) through a porous plug. This is because the rate of diffusion of a gas through a porous plug is inversely proportional to the square root of its molar mass. Since the molar mass of hydrogen (2 g/mol) is much smaller than that of oxygen (32 g/mol), the rate of diffusion of hydrogen through a porous plug is much faster than that of oxygen. To be more specific, the ratio of the diffusion rates of two gases through a porous plug is given by the equation: Rate of diffusion of gas A / Rate of diffusion of gas B = √(Molar mass of gas B / Molar mass of gas A) Using the molar masses of hydrogen and oxygen, we get: Rate of diffusion of hydrogen / Rate of diffusion of oxygen = √(32 g/mol / 2 g/mol) = √16 = 4 Therefore, hydrogen diffuses through a porous plug four times as fast as oxygen. Thus, the correct answer is: four times as fast as oxygen.
Ibeere 13 Ìròyìn
How many alkoxyalkanes can be obtained from the molecular formula C4 H10 O?
Awọn alaye Idahun
Alkoxyalkanes have a general formula of R-O-R', where R and R' are alkyl groups. From the given molecular formula C4H10O, we can see that there are four carbon atoms, so the longest possible alkyl group is butyl (C4H9-). To form alkoxyalkanes, we need to attach an oxygen atom to the alkyl group. This can be done in three ways - by attaching the oxygen to one of the terminal carbon atoms (forming a primary alcohol), by attaching it to one of the central carbon atoms (forming a secondary alcohol), or by attaching it to the carbonyl carbon atom (forming an ester). So, we can obtain a maximum of three alkoxyalkanes from the given molecular formula. However, we need to take into account that there are different isomers possible for each type of alcohol or ester, depending on which carbon atom the oxygen is attached to. Therefore, the correct answer is (at least) 3.
Ibeere 16 Ìròyìn
Which of the following could not be alkane?
Awọn alaye Idahun
An alkane is a type of hydrocarbon with only single bonds between the carbon atoms. It follows the general formula CnH2n+2, where "n" is the number of carbon atoms in the molecule. To determine whether a molecule is an alkane or not, we can calculate its molecular formula and check if it fits the general formula of alkane. Out of the given options, the third one (C7H14) cannot be an alkane. To see why, let's use the general formula of alkane, which is CnH2n+2. For C7H14 to be an alkane, it should have 2n+2 = 2(7) + 2 = 16 hydrogen atoms. However, C7H14 has only 14 hydrogen atoms, which means it does not follow the general formula of alkane. Therefore, C7H14 cannot be an alkane. The other options are as follows: - C4H10: This is butane, which is an alkane with four carbon atoms. - C5H12: This is pentane, which is an alkane with five carbon atoms. - C8H18: This is octane, which is an alkane with eight carbon atoms. In summary, the molecule C7H14 cannot be an alkane because it does not follow the general formula of alkane, while the other options are all examples of alkanes.
Ibeere 17 Ìròyìn
In the reaction:
M + N → P
ΔH = +Q kJWhich of the following would increase the concentration of the product?
Awọn alaye Idahun
Increasing the temperature would increase the concentration of the product, P. The reaction rate, or the speed at which the reaction occurs, is influenced by temperature. An increase in temperature raises the kinetic energy of the reacting molecules, making it easier for them to collide and react. This leads to a higher rate of reaction and a higher concentration of the product, P. Adding a suitable catalyst can also increase the reaction rate, but it does not directly affect the concentration of the product. Increasing the concentration of P does not affect the reaction itself, but is a result of the reaction having taken place. Decreasing the temperature would slow down the reaction rate and reduce the concentration of the product.
Ibeere 18 Ìròyìn
Which of the following metals is the most essential in the regulation of blood volume, blood pressure and osmotic equilibrium?
Awọn alaye Idahun
The metal that is most essential in the regulation of blood volume, blood pressure, and osmotic equilibrium is sodium. Sodium is a key electrolyte that helps maintain the balance of fluids in the body, including blood volume and blood pressure. Sodium ions are positively charged and are attracted to negatively charged ions, such as chloride (Cl-) and bicarbonate (HCO3-), which together help regulate the pH of the blood. Sodium is also essential for maintaining osmotic equilibrium, which refers to the balance of solutes between cells and the extracellular fluid. Osmotic equilibrium is critical for proper cellular function and is regulated by the movement of water and electrolytes, including sodium, in and out of cells. While the other metals listed (zinc, manganese, and iron) are important for various functions in the body, such as enzyme activity and oxygen transport, they are not directly involved in regulating blood volume, blood pressure, and osmotic equilibrium in the same way that sodium is. Therefore, the answer is not options 1, 2, or 4, and the correct answer is: sodium.
Ibeere 19 Ìròyìn
Which of the following conditions will most enhance the spontaneity of a reaction?
Awọn alaye Idahun
The condition that will most enhance the spontaneity of a reaction is when ΔH is negative (i.e., the reaction releases heat) and ΔS is positive (i.e., the reaction increases the disorder or randomness of the system). This is because a negative ΔH indicates that the reaction releases energy, which is favorable for a spontaneous reaction, while a positive ΔS indicates that the system becomes more disordered, which is also favorable for spontaneous reactions. Among the given options, the first condition of a negative and greater ΔH than ΔS is the best option for enhancing the spontaneity of a reaction. The other options have either a positive ΔH or a zero ΔS, which is not favorable for spontaneous reactions.
Ibeere 20 Ìròyìn
The heat of formation of ethene, C2 H4 is 50 kJmol−1 , and that of ethane, C2 H6 is -82kJmol−1 . Calculate the heat evolved in the process:
C2 H4 + H2 → C2 H6
Awọn alaye Idahun
The heat evolved in a chemical reaction can be calculated by subtracting the heat of formation of the reactants from the heat of formation of the products. In this case, the reactants are ethene (C2H4) and hydrogen (H2), and the product is ethane (C2H6). The heat of formation of ethene is 50 kJ/mol and that of hydrogen is 0 kJ/mol (because hydrogen is a reference element). The heat of formation of ethane is -82 kJ/mol. So, the heat evolved in the reaction is given by: Heat evolved = (Heat of formation of products) - (Heat of formation of reactants) = (-82 kJ/mol) - (50 kJ/mol + 0 kJ/mol) = -82 kJ/mol - 50 kJ/mol = -132 kJ/mol. Therefore, the heat evolved in the process is -132 kJ.
Ibeere 21 Ìròyìn
How many electrons will be found in the nucleus of an atom with mass number 23 and 17 neutrons?
Awọn alaye Idahun
Electrons are not found in the nucleus of an atom. The nucleus of an atom only contains protons and neutrons, while electrons are located outside the nucleus in the electron cloud. The mass number of an atom is equal to the sum of the number of protons and the number of neutrons in the nucleus. Therefore, if an atom has a mass number of 23 and 17 neutrons, then the number of protons in the nucleus can be calculated as: Protons = Mass number - Neutrons Protons = 23 - 17 Protons = 6 This means that the nucleus of the atom contains 6 protons. The number of electrons in a neutral atom is equal to the number of protons, so the atom also contains 6 electrons in the electron cloud surrounding the nucleus. In summary, the answer is that there are 6 protons and 6 electrons in the atom.
Ibeere 22 Ìròyìn
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Awọn alaye Idahun
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Ibeere 23 Ìròyìn
Consider the equation below:
Cr2 O2−7 + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2 O.
The oxidation number of chromium changes from
Awọn alaye Idahun
Cr2
O2−7
+ 6Fe2+
+ 14H+
→
2Cr3+
+ 6Fe3+
+ 7H2
O
The oxidation of Cr in Cr2
O2−7
:
Let the oxidation of Cr = x;
2x + (-2 x 7) = -2 ⟹
2x - 14 = -2
2x = 12 ; x = +6
Hence, the change in oxidation of Cr = +6 to +3
Ibeere 24 Ìròyìn
Hydrogen bond is a sort of
Awọn alaye Idahun
Hydrogen bond is a covalent intermolecular bond that exists between hydrogen and highly electronegative elements like nitrogen, oxygen and fluorine.
Ibeere 25 Ìròyìn
A synthetic rubber is obtained from the polymerization of
Awọn alaye Idahun
A synthetic rubber is obtained from the polymerization of isoprene. Isoprene is a type of hydrocarbon that can be polymerized, or chemically joined together, to form long chains. This process is called polymerization, and the resulting material is called a polymer. When isoprene is polymerized, it forms a synthetic rubber, which is a type of polymer that is used in a wide range of products, including tires, hoses, and adhesives. Synthetic rubber offers several advantages over natural rubber, including improved durability and resistance to heat, ozone, and chemicals.
Ibeere 26 Ìròyìn
Na2 CO3 + 2HCl → 2NaCl + H2 O + CO2
The indicator most suitable for this reaction should have a pH equal to
Awọn alaye Idahun
Methyl orange is the best indicator for the reaction with range 3.1 - 4.4.
Ibeere 27 Ìròyìn
Which of the following alkaline metals react more quickly spontaneously with water?
Awọn alaye Idahun
The alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are the second most reactive metals in the periodic table, and, like the Group 1 metals, have increasing reactivity in the higher periods. Beryllium (Be) is the only alkaline earth metal that does not react with water or steam, even if metal is heated to red heat. Additionally, beryllium has a resistant outer oxide layer that lowers its reactivity at lower temperatures.
Magnesium shows insignificant reaction with water, but burns vigorously with steam or water vapor to produce white magnesium oxide and hydrogen gas:
A metal reacting with cold water will produce metal hydroxide. However, if a metal reacts with steam, like magnesium, metal oxide is produced as a result of metal hydroxides splitting upon heating.
The hydroxides of calcium, strontium and barium are only slightly water-soluble but produce sufficient hydroxide ions to make the environment basic, giving a general equation of:
| Order of reactivity | Metal | Reactions with water or steam |
|---|---|---|
| most reactive | potassium (K) | very vigorous reaction with cold water |
| ↑ | sodium (Na) | vigorous reaction with cold water |
| ↓ | calcium (Ca) | less vigorous reaction with cold water |
| least reactive | magnesium (Mg) | slow reaction with cold water, vigorous with steam |
Ibeere 28 Ìròyìn
Which quantum divides shells into orbitals?
Awọn alaye Idahun
The quantum that divides shells into orbitals is the "Azimuthal" quantum number, also known as the "angular momentum" quantum number. The azimuthal quantum number determines the shape of an electron's orbital, which is a region in space where there is a high probability of finding an electron. It describes the angular momentum of an electron in an atom and the number of subshells within a given shell. Each subshell is associated with a specific shape, and can hold a certain number of electrons. The azimuthal quantum number is represented by the letter "l" and can have integer values ranging from 0 to (n-1), where "n" is the principal quantum number. Each value of "l" corresponds to a different subshell shape: - l = 0 corresponds to an "s" subshell, which is spherical in shape. - l = 1 corresponds to a "p" subshell, which has a dumbbell shape with two lobes. - l = 2 corresponds to a "d" subshell, which has a more complex shape with four lobes and a doughnut-like ring. - l = 3 corresponds to an "f" subshell, which has an even more complex shape with eight lobes. The number of orbitals within a subshell is equal to 2l+1. For example, a "p" subshell (l = 1) has three orbitals (2l+1 = 3), which are labeled as "px", "py", and "pz". In summary, the azimuthal quantum number determines the shape of the electron's orbital and the number of subshells within a given shell, and it is represented by the letter "l".
Ibeere 30 Ìròyìn
The following are isoelectronic ions except
Awọn alaye Idahun
Two or more ions are said to be isoelectronic if they have the same electronic structure and the same number of valence electrons.
Na+
= 10 electrons = 2, 8
Mg2+
= 10 electrons = 2,8
O2−
= 10 electrons = 2,8
Si2+
= 12 electrons = 2,8,2
⟹
Si2+
is not isoelectronic with the rest.
Ibeere 31 Ìròyìn
The IUPAC nomenclature of the compound
H3 C - CH(CH3 ) - CH(CH3 ) - CH2 - CH3
Awọn alaye Idahun
Ibeere 32 Ìròyìn
A secondary alkanol can be oxidized to give an
Awọn alaye Idahun
A secondary alkanol is an alcohol with two carbon atoms attached to the carbon bearing the hydroxyl group (-OH). Secondary alkanols can be oxidized by a strong oxidizing agent, such as potassium dichromate (K2Cr2O7), to give an alkanone. During the oxidation process, the oxygen atom from the oxidizing agent replaces the hydroxyl group of the secondary alkanol to form a carbonyl group (C=O) in the alkanone. Since alkanones contain a carbonyl group, they are also known as ketones. Therefore, the answer to the question is alkanone, as secondary alkanols can be oxidized to form ketones.
Ibeere 33 Ìròyìn
Which two gases can be used for the demonstration of the fountain experiment?
Awọn alaye Idahun
Two gases that can be used in the study of fountain experiment is ammonia gas and hydrogen chloride gas. The experiment introduces concepts like solubility and the gas laws at the entry level.
Ibeere 34 Ìròyìn
When chlorine water is exposed to bright sunlight, the following products are formed
Awọn alaye Idahun
Ibeere 35 Ìròyìn
A certain hydrocarbon on complete combustion at s.t.p produced 89.6dm3 of CO2 and 54g of water. The hydrocarbon should be
Awọn alaye Idahun
In the question above an Hydrocarbon combust to give CO2 and H20
Let Hydrocarbon be
CxHy + x+Y/4O2= xCO2 + Y/2H2O
Mass of C0=44g and H2O=18g
at STP vol= 22.4
Therefore, 1mole of CO2 contains 44g and 22.4dm³ at STP
1mole = 22.4dm³
xmole = 89.6dm³
Cross multiplying x=89.6/22.4 =4mole of CO2 produce
1mole of H2O = 18g
Xmole = 56g
Cross multiplying
X = 56/18 = 3mole of H20
Then....
CxHy + X + y/4O2 = 4CO2+ 3H2O
Balancing
C4H6 + 6O2 = 4CO2 + 3H2O
Ibeere 36 Ìròyìn
Consider the reaction: A + 2B(g)⇌ 2C + D(g) (Δ H = +ve)
What will be the effect of decrease in temperature on the reaction?
Awọn alaye Idahun
The effect of a decrease in temperature on the reaction will be that the rate of the backward reaction will increase. In a chemical reaction, the rate of the forward and backward reactions are determined by the activation energy required for each step and the temperature of the system. When the temperature is decreased, the rate of the reaction decreases, and the rate of the backward reaction increases. This shift in the rate of the backward reaction means that there will be a shift in the position of the equilibrium of the reaction. As the rate of the backward reaction increases, the concentration of the reactants will increase and the concentration of the products will decrease, leading to a decrease in the overall yield of the products. In this reaction, as ΔH (the change in enthalpy) is positive, which means that the reaction is endothermic. Endothermic reactions absorb heat from the surroundings to proceed, so a decrease in temperature will lead to a decrease in the rate of the forward reaction and an increase in the rate of the backward reaction. This shift in the rate of the backward reaction will shift the position of the equilibrium of the reaction to the left, leading to an increase in the concentration of the reactants and a decrease in the concentration of the products.
Ibeere 37 Ìròyìn
What mass of magnesium would be obtained by passing a current of 2 amperes for 2 hours, through molten magnesium chloride?
[1 faraday = 96500C, Mg = 24]
Awọn alaye Idahun
Current (I) = 2A; Time (t) = 2 hours = 7200 secs
Q = It
= 2 x 7200 = 14400C
1 F = 96500C
x = 14400C
x = 1440096500
= 0.15F
Mg2+
+ 2e−
→
Mg
2F →
24g
0.15F →
x
2x = 24 x 0.15
x = 24×0.152
= 1.8g
Ibeere 38 Ìròyìn
Which of the following does not support the fact that air is a mixture?
Awọn alaye Idahun
The option that does not support the fact that air is a mixture is "the constituents of air are in a fixed proportion by mass". Air is a mixture of different gases, primarily nitrogen (78%) and oxygen (21%), with small amounts of other gases such as carbon dioxide, argon, and neon. The proportion of each gas in air is not fixed and can vary depending on the location and other factors. For example, the amount of carbon dioxide in air can increase in areas with high levels of pollution, while the proportion of oxygen can decrease at high altitudes. Therefore, the composition of air is not in a fixed proportion by mass. On the other hand, the fact that air cannot be represented with a chemical formula and its constituents can be separated by physical means support the fact that air is a mixture. A chemical formula represents a pure substance, and since air is a mixture of gases, it cannot be represented by a single formula. Air can be separated into its individual components through physical means such as distillation or filtration, which is a characteristic of mixtures.
Ibeere 39 Ìròyìn
Which of the following sets of operation will completely separate a mixture of sodium chloride, sand and iodine?
Awọn alaye Idahun
The set of operations that will completely separate a mixture of sodium chloride, sand, and iodine is: - filtration, to separate the sand and iodine from the sodium chloride - evaporation to dryness, to concentrate the sodium chloride solution and remove any remaining water - sublimation, to separate the iodine as a solid from the remaining sodium chloride By using these operations, you can separate each component of the mixture into separate, pure forms. The order of the operations is important because each step must be done in a way that effectively separates the components and does not interfere with subsequent steps.
Ibeere 40 Ìròyìn
A cell shorthand notation can be written as A / A+ // B2+ /B. The double slash in the notation represents the
Awọn alaye Idahun
The double slash in the cell shorthand notation represents the salt bridge. A salt bridge is a component of an electrochemical cell that connects the two half-cells and allows the flow of ions between them. It consists of an inert electrolyte solution (usually a salt) that is placed between the two half-cells. The purpose of the salt bridge is to maintain electrical neutrality in each half-cell by allowing the flow of ions to balance the charge buildup in the half-cells. In the cell shorthand notation, the double slash "//" represents the salt bridge that connects the two half-cells of the electrochemical cell. The first half-cell is represented on the left-hand side of the slash and the second half-cell is represented on the right-hand side of the slash. The anode (where oxidation occurs) is represented on the left side, and the cathode (where reduction occurs) is represented on the right side. Therefore, the correct answer is option number 3: salt bridge.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?