A carregar...
|
Pressione e Mantenha para Arrastar |
|||
|
Clique aqui para fechar |
|||
Pergunta 1 Relatório
The total number of ATP produced during glycolysis is
Detalhes da Resposta
During the process of glycolysis, a single glucose molecule is broken down into two molecules of pyruvate. During this metabolic pathway, there is a net gain of adenosine triphosphate (ATP) molecules. To understand how many ATP molecules are produced, let's break it down step by step.
1. **Initial ATP Investment:** Glycolysis initially requires an investment of 2 ATP molecules to phosphorylate glucose and convert it into a more reactive form during the early stages of the glycolytic pathway.
2. **ATP Production:** As glycolysis progresses, a total of 4 ATP molecules are produced. This occurs in the later steps of the pathway where adenosine diphosphate (ADP) is phosphorylated to form ATP. This is known as substrate-level phosphorylation.
3. **Net ATP Gain:** To find out the net gain of ATP through glycolysis, simply subtract the initial ATP investment from the total ATP produced:
Net ATP = Total ATP produced - Initial ATP investment
Net ATP = 4 ATP - 2 ATP
Net ATP = 2 ATP
Thus, the net total number of ATP produced during glycolysis is 2 molecules.
Pergunta 2 Relatório
A practical application of total internal reflection is found in
Detalhes da Resposta
A practical application of total internal reflection is found in fiber optics.
To understand this, let's break it down:
When light travels from one medium to another (such as from glass to air), it changes direction. This is known as refraction. However, there is a phenomenon called total internal reflection which occurs when light is traveling within a denser medium towards a less dense medium (like from glass to air) and hits the boundary at an angle greater than a certain critical angle. Instead of passing through, the light is completely reflected back into the denser medium.
Fiber optics technology makes use of this principle. In fiber optics, light is transmitted along the core of a thin glass or plastic fiber. The core is surrounded by another layer called the cladding. This cladding has a lower refractive index than the core, which facilitates total internal reflection. As a result, the light continuously reflects internally along the length of the fiber, allowing it to travel long distances with minimal loss.
This property is harnessed in various applications such as in high-speed telecommunication systems, medical equipment like endoscopes, and other technologies that require the transmission of data over long distances with high efficiency.
Pergunta 3 Relatório
Use the diagram above to answer the question that follows
The diagram above is
Detalhes da Resposta
The diagram in the image represents the urinary system, as indicated by the correct answer. The urinary system includes the kidneys, ureters, bladder, and urethra, which are responsible for filtering blood and excreting waste in the form of urine.
Kidneys – Filter waste and excess fluids from the blood to form urine.
Ureters – Tubes that carry urine from the kidneys to the bladder.
Urinary Bladder – Stores urine before it is expelled from the body.
Urethra – A tube that allows urine to exit the body.
This system plays a crucial role in maintaining the body's fluid balance and removing waste products.
Pergunta 4 Relatório
The land and sea breeze is attributed to
Detalhes da Resposta
The phenomenon of land and sea breeze is primarily attributed to convection.
To understand this, let's first look at what land and sea breezes are:
Land Breeze: At night, the land cools down faster than the sea. The cooler, denser air from the land moves towards the sea, and this is known as a land breeze.
Sea Breeze: During the day, the land heats up more quickly than the sea. The warmer, lighter air over the land rises, and the cooler air from the sea moves in to take its place. This movement of air from the sea to the land is known as a sea breeze.
Both of these processes involve the movement of air due to differences in temperature and density, which is essentially the process of convection.
Convection is the transfer of heat through a fluid (like air or water) and is responsible for moving air masses and creating these breezes. The warm air, being less dense, rises, and the cooler, denser air moves in to replace it.
In contrast, conduction is the transfer of heat through a solid material, and radiation is the transfer of heat in the form of electromagnetic waves, neither of which primarily drive the processes of these breezes, making convection the key player.
Pergunta 5 Relatório
The gravitational force between two objects is 10N, what is the new value of the force if the distance between them is halved?
Detalhes da Resposta
The gravitational force between two objects is determined by Newton's Law of Universal Gravitation, which can be expressed by the formula:
F = G * (m1 * m2) / r²
where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between the centers of the two objects.
In this problem, it is given that the initial gravitational force is 10N. According to the formula, the gravitational force is inversely proportional to the square of the distance between the two objects.
So, if the distance between the objects is halved (i.e., r becomes r/2), then the new gravitational force F' can be calculated based on the relationship:
F' = G * (m1 * m2) / (r/2)² = G * (m1 * m2) / (r²/4) = 4 * (G * m1 * m2 / r²) = 4 * F
Since the initial force F was 10N, the new force F' when the distance is halved is:
F' = 4 * 10 = 40N
Thus, the new value of the gravitational force is 40N.
Pergunta 6 Relatório
Rainbow is formed when sunlight undergoes
Detalhes da Resposta
A rainbow is formed through a combination of three processes: reflection, refraction, and dispersion. Let's break down each process to understand how a rainbow forms:
1. Refraction: When sunlight enters a raindrop, it bends or changes direction. This bending of light is known as **refraction**. Different colors of sunlight bend by different amounts because they have different wavelengths.
2. Reflection: Once inside the raindrop, the light gets reflected off the inside surface of the drop. This reflection sends the light back out of the raindrop at different angles.
3. Dispersion: As the light exits the raindrop, it bends again (refraction). Because each color bends by a different amount, the sunlight is spread out into its component colors, creating a spectrum. This spreading into a spectrum is called **dispersion**.
All three processes contribute to the formation of a rainbow. The combination of **refraction, reflection, and dispersion** results in the beautiful arc of colors that we see in the sky.
Pergunta 7 Relatório
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Detalhes da Resposta
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Pergunta 8 Relatório
The diaphragm in the camera is similar to what part of the eyes?
Detalhes da Resposta
The diaphragm in a camera is similar to the iris in the human eye.
Here's a simple explanation:
In summary, the iris acts like a natural diaphragm, regulating the light that passes through the eye, much like the diaphragm does in a camera.
Pergunta 9 Relatório
288KJ is conducted across two opposite faces of a 3m cube of temperature gradient 90ºCm−1 in 7200s. Calculate the thermal conductivity.
Detalhes da Resposta
The thermal conductivity of a material is a measure of its ability to conduct heat. It is defined by the formula:
Q = k × A × ΔT/Δx × t
Where:
We are given:
The cube has each side measuring 3 meters, so the area A of one face (since heat is conducted across two opposite faces, effectively using one face area for calculation) is:
A = 3m × 3m = 9 m2
Now, we need to solve for k (thermal conductivity):
Q = k × A × ΔT/Δx × t
288,000 J = k × 9 m2 × 90 ºC/m × 7,200 s
k = 288,000 / (9 × 90 × 7,200)
Calculate the denominator:
9 × 90 × 7,200 = 5,832,000
Therefore:
k = 288,000 / 5,832,000 ≈ 0.0493 W/mK
This converts approximately to 4.93 × 10-2 W/mK.
Therefore, the correct answer is 4.9 × 10-2 W/mK.
Pergunta 10 Relatório
The dimension of power is
Detalhes da Resposta
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Pergunta 11 Relatório
Which of the following materials has a very large energy gap band?
Detalhes da Resposta
An insulator is a material that has a very large energy gap between its valence band and conduction band. To understand this, let's first consider the concept of energy bands: In materials, electrons exist in different energy levels. These levels form bands called the valence band and the conduction band. A material is classified based on the size of the energy gap between these bands.
Thus, insulators have a very large energy gap band, making them poor conductors of electricity.
Pergunta 12 Relatório
The average translational kinetic energy of gas molecules depends on
Detalhes da Resposta
The average translational kinetic energy of gas molecules is directly related to the temperature of the gas. This relationship is based on the principles of kinetic molecular theory, which explains the behavior of gas molecules in terms of their motion.
Let's break this down simply:
1. Temperature and Kinetic Energy:
The average translational kinetic energy of gas molecules is given by the equation:
\( KE_{avg} = \frac{3}{2} k_B T \)
where \( KE_{avg} \) is the average translational kinetic energy, \( k_B \) is the Boltzmann constant, and \( T \) is the absolute temperature in Kelvin. This formula shows that the kinetic energy is directly proportional to the temperature.
2. What This Means:
As the temperature of a gas increases, the molecules move faster, which increases their translational kinetic energy. Conversely, as the temperature decreases, the molecules slow down, resulting in lower kinetic energy.
It is important to note that this relation is independent of the pressure and the number of moles of the gas. While pressure and the number of moles do affect the overall behavior of a gas, they do not directly influence the average translational kinetic energy of individual molecules.
Therefore, the correct explanation is that the average translational kinetic energy of gas molecules depends on temperature only.
Pergunta 13 Relatório
How much joules of heat are given out when a piece of iron, of mass 60g and specific heat capacity 460JKg−1 K−1 , cools from 75ºC to 35ºC
Detalhes da Resposta
To find out how much heat is given out when the piece of iron cools down, we can use the formula for heat transfer:
Q = mcΔT
Where:
First, let's list the values given and convert the mass from grams to kilograms:
Now, calculate the change in temperature:
ΔT = final temperature - initial temperature = 35ºC - 75ºC = -40ºC
Note: Since we are calculating the heat given out as the iron cools, the temperature change will be negative, which will make Q positive, indicating heat is released.
Substitute these values into the heat transfer formula:
Q = mcΔT = (0.06 kg) x (460 J/Kg·K) x (-40ºC)
Q = 0.06 x 460 x -40
Q = -1104 Joules
Since the question asks for how much heat is given out, we consider the positive value of Q, which is 1104J. Therefore, 1104J of heat is given out when the piece of iron cools from 75ºC to 35ºC.
Pergunta 14 Relatório
Mouth part adapted for piercing and sucking is found in
Detalhes da Resposta
The mouthpart adapted for piercing and sucking is found in the mosquito. Mosquitoes have a specialized mouth structure called a proboscis. This proboscis is long and slender, allowing mosquitoes to puncture the skin of their hosts and suck blood. The proboscis is a complex structure that contains several needle-like parts that make the piercing and sucking process efficient and effective.
Pergunta 15 Relatório
The food nutrient with the highest energy value is
Detalhes da Resposta
Fat is the food nutrient with the highest energy value, providing 9 calories per gram, while carbohydrates and proteins provide 4 calories per gram.
Fat is the body's most concentrated source of energy, providing more than twice as much potential energy as carbohydrates or proteins.However, carbohydrates burn fastest in metabolism. Fats are a type of lipid. Lipids are a group of organic compounds that are insoluble in water but soluble in organic solvents. Fats are solid at room temperature, while oils are liquid at room temperature.
Therefore, the correct answer is option C.
Pergunta 16 Relatório
The fourth overtone of a closed pipes is 900Hz, its fundamental frequency is
Detalhes da Resposta
To solve this problem, let's first understand how sound works in a closed pipe. A closed pipe has one end closed and another end open. Sound waves inside such a pipe create standing waves, where nodes (points of no movement) and antinodes (points of maximum movement) are formed.
For a closed pipe, the fundamental frequency (also called the first harmonic) has one node at the closed end and one antinode at the open end. The wavelength is four times the length of the pipe.
The overtone sequence for a closed pipe includes only odd harmonics: 1st (fundamental), 3rd, 5th, 7th, etc. The nth overtone is the 2nth + 1 harmonic. The equation for the frequency of a harmonic in a closed pipe is:
f_n = n * f_1, where f_n is the frequency of the nth harmonic and f_1 is the fundamental frequency
In this case, the fourth overtone corresponds to the 9th harmonic because 2 * 4 + 1 = 9. Therefore, we have:
900 Hz = 9 * f_1
To find the fundamental frequency (f_1), we solve for f_1:
f_1 = 900 Hz / 9
f_1 = 100 Hz
Therefore, the fundamental frequency is 100 Hz.
Pergunta 17 Relatório
A load of 300N is to be lifted by a machine with a velocity ratio of 2 and an efficiency of 60%. What effort will be applied to lift the load?
Detalhes da Resposta
To determine the effort needed to lift a load using a machine, we first need to understand some key concepts: **Load**, **Effort**, **Velocity Ratio** (VR), and **Efficiency**.
1. **Load** is the force or weight that needs to be lifted by the machine. In this case, the load is 300N.
2. **Velocity Ratio (VR)** is the ratio of the distance moved by the effort to the distance moved by the load. Given here as 2.
3. **Efficiency** of a machine is expressed as a percentage and is the ratio of the useful work output to the input work done by the effort. Here, the efficiency is 60% or 0.60 as a decimal.
The formula to calculate the **Effort** is derived from the relationship between these factors:
\[ \text{Efficiency} = \frac{\text{Mechanical Advantage (MA)}}{\text{Velocity Ratio (VR)}} \]
Where:
\[ \text{Mechanical Advantage (MA)} = \frac{\text{Load}}{\text{Effort}} \]
From the above, we have:
\[ \text{MA} = \text{VR} \times \text{Efficiency} \]
Replacing with the given values:
\[ MA = 2 \times 0.60 = 1.2 \]
Now, calculate the **Effort** using the relation:
\[ \text{Effort} = \frac{\text{Load}}{\text{MA}} \]
\[ \text{Effort} = \frac{300N}{1.2} = 250N \]
Therefore, the **Effort** needed to lift the load is 250N.
Pergunta 18 Relatório
Calculate the quantity of heat for copper rod whose thermal capacity is 400Jk−1 for a temperature change of 60ºC to 80ºC
Detalhes da Resposta
To calculate the quantity of heat absorbed or released by a substance, we can use the formula:
Q = C × ΔT
where:
Given:
First, calculate the change in temperature:
ΔT = Final temperature - Initial temperature = 80°C - 60°C = 20°C
Now, substitute the values into the formula to find the quantity of heat:
Q = 400 J/°C × 20°C
Calculate the answer:
Q = 8000 J
Since the options provided are in kilojoules (KJ), we need to convert joules (J) to kilojoules (1 KJ = 1000 J):
Q = 8000 J ÷ 1000 = 8 KJ
Therefore, the quantity of heat for the copper rod, given the specified conditions, is 8 KJ.
Pergunta 19 Relatório
The thermometer whose thermometric property is change in volume with temperature is
Detalhes da Resposta
A thermometer that relies on the **thermometric property** of **change in volume with temperature** is the **Liquid-in-glass thermometer**.
Here is why:
1. **Construction**: A liquid-in-glass thermometer consists of a **glass tube** that encloses a small reservoir filled with a **thermometric liquid**, typically mercury or colored alcohol.
2. **Principle of Operation**: As the **temperature** changes, the **volume of the liquid** inside the tube changes. When the temperature rises, the liquid **expands** and moves up the tube. Conversely, when the temperature decreases, the liquid **contracts** and moves down the tube.
3. **Scale Calibration**: The thermometer has graduations marked along the tube, allowing the user to read the temperature by observing the level of the liquid against these scale markings.
Therefore, the liquid-in-glass thermometer operates on the principle that the **volume of a liquid changes with temperature**, making it the correct answer.
Pergunta 20 Relatório
Bifocal lens is used to correct the eye defect of
Detalhes da Resposta
Bifocal lenses are primarily used to correct the eye defect known as presbyopia. As people age, the lens of the eye naturally loses its flexibility, making it difficult to focus on objects that are close up. This condition is known as presbyopia. A bifocal lens is designed with two different optical powers to accommodate this need. The upper part of the lens is usually crafted for distance vision, while the lower segment is designed for near vision tasks, such as reading.
Astigmatism is a different eye condition caused by irregular curvature of the cornea or lens, resulting in blurred or distorted vision at all distances. This condition is typically corrected with cylindrical lenses rather than bifocals.
Hypermetropia, commonly known as farsightedness, is a condition where distant objects can be seen more clearly than near ones. Simple convex lenses are usually used for this correction.
Myopia, or nearsightedness, is a condition where nearby objects are seen clearly, while distant objects appear blurry. Concave lenses are generally used to correct this condition.
In summary, bifocal lenses are specifically designed to address the challenges of focusing at different distances simultaneously, making them ideal for managing presbyopia.
Pergunta 21 Relatório
At absolute zero temperature, the average velocity of the molecules
Detalhes da Resposta
At absolute zero temperature, which is defined as 0 Kelvin or -273.15 degrees Celsius, the energy of molecular motion ceases. This means that the molecules theoretically have minimal energy, and hence, their motion stops entirely. Therefore, the average velocity of the molecules is zero. In reality, absolute zero is a theoretical limit, and it is practically unreachable, but it serves as a concept to help in understanding the behavior of molecules at extremely low temperatures. Thus, under this theoretical condition, the average motion of molecules would be nonexistent. In summary, the average velocity of the molecules at absolute zero is zero.
Pergunta 22 Relatório
Two capacitors of 0.0003μF and 0.0006μF are connected in series, find their combined capacitance.
Detalhes da Resposta
When capacitors are connected in series, the formula to find their combined capacitance \(C_{\text{total}}\) is given by:
\[ \frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2} \]
where \(C_1\) and \(C_2\) are the capacitances of the individual capacitors. In this case, \(C_1 = 0.0003 \, \mu\text{F}\) and \(C_2 = 0.0006 \, \mu\text{F}\).
First, calculate the reciprocal of each capacitance:
\[ \frac{1}{C_1} = \frac{1}{0.0003} \]
\[ \frac{1}{C_2} = \frac{1}{0.0006} \]
Calculating each value:
\[ \frac{1}{0.0003} = \frac{10^6}{3} \] and \[ \frac{1}{0.0006} = \frac{10^6}{6} \]
Now, add these values together:
\[ \frac{1}{C_{\text{total}}} = \frac{10^6}{3} + \frac{10^6}{6} = \frac{10^6 \times 2}{6} + \frac{10^6 \times 1}{6} = \frac{10^6 \times 3}{6} = \frac{10^6}{2} \]
Finally, take the reciprocal of the resulting value to find \(C_{\text{total}}\):
\[ C_{\text{total}} = \frac{2}{10^6} = 0.0002 \, \mu\text{F} \]
So, the combined capacitance of the two capacitors in series is 0.0002 μF.
Pergunta 23 Relatório
Using the diagram above, the effective force pushing it forward at an angle 60º is
Detalhes da Resposta
To determine the effective force pushing the object forward at an angle of 60º, we need to resolve the given force into its components. Specifically, we are interested in the horizontal component of the force, as this is the part that effectively pushes the object forward.
The general formula to calculate the horizontal component of a force (Fx) when the force is applied at an angle (θ) is:
Fx = F * cos(θ)
Where:
Assuming the magnitude of the force applied (F) is 50N, then the effective forward force can be calculated as follows:
Fx = 50N * cos(60º)
Using the trigonometric value:
cos(60º) = 0.5
Therefore:
Fx = 50N * 0.5
Fx = 25N
Hence, the effective force pushing it forward at an angle of 60º is 25.00N. Therefore, the correct answer is 25.00N.
Pergunta 24 Relatório
What is the colour of red rose under a blue light?
Detalhes da Resposta
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Pergunta 25 Relatório
If the displacement of a car is proportional to the square of time, then the car is moving with
Detalhes da Resposta
When we say that the displacement of a car is proportional to the square of time (d ∝ t²), it indicates a relationship between displacement (d) and time (t). This relationship is characteristic of motion where there is constant acceleration. Essentially, it means that the car is not moving at a constant speed (velocity) but is accelerating at a constant rate.
The mathematical representation of this scenario can be expressed using the formula for displacement under uniform acceleration:
d = ut + (1/2)at².
In this equation:
When the displacement is directly proportional to the square of time (d ∝ t²), it implies that the second term of the equation, which contains the (1/2)at² part, dominates the relationship. Thus, the initial velocity (u) is typically zero or negligible, making the entire displacement dependent on how time squared interacts with acceleration.
Therefore, the car is moving with uniform acceleration.
Pergunta 26 Relatório
If a charge ion goes through a combined electric field E and magnetic field B, the resultant emergent velocity of the ion is
Detalhes da Resposta
The resultant emergent velocity of a charged ion moving through combined electric and magnetic fields can be derived from the condition where the electric force equals the magnetic force. This gives us the formula for the velocity v:
q E = qvB
v = EB (q will cancel out)
NOTE: When both fields are present, for the ion to move without deflection, the electric force must equal the magnetic force.
Pergunta 27 Relatório
The energy in a moving car is an example of
Detalhes da Resposta
The energy in a moving car is an example of kinetic energy.
To explain simply, **energy** is the ability to do **work** or cause **change**. There are different forms of energy, and **kinetic energy** is one of them. It is defined as the energy possessed by an object due to its motion.
When a car is moving, it possesses **kinetic energy** because its components are in **motion**. This motion energy allows the car to do tasks, such as transporting people or goods from one place to another. The faster the car moves, the greater its **kinetic energy**, and thus it can make a larger impact or do more work.
In contrast, energy forms like **mechanical energy** is a combination of both kinetic and potential energy; **electrical energy** is associated with electrical charge movement, while **potential energy** is related to the position or condition of an object (like a car parked on a hill). Therefore, the specific type of energy from a moving car is **kinetic energy**.
Pergunta 28 Relatório
The energy of light of frequency 2.0 x 1015 Hz is (h = 6.63 x 10−34 Js)
Detalhes da Resposta
To determine the energy of light given its frequency, we can utilize the formula:
E = h × f
Where:
E is the energy of the photon in joules (J)
h is Planck's constant, approximately 6.63 × 10-34 J·s
f is the frequency of light in hertz (Hz)
Given the frequency f = 2.0 × 1015 Hz, we can substitute the known values into our equation:
E = 6.63 × 10-34 J·s × 2.0 × 1015 Hz
To simplify the calculation, multiply the numerical parts and then add the indices of 10:
E = (6.63 × 2.0) × (10-34 × 1015)
E = 13.26 × 10-19 J
This can be approximated to 1.33 × 10-18 J. Thus, the energy of light with the given frequency is 1.33 × 10-18 J.
Pergunta 29 Relatório
What is the least possible error encountered when taking measurement with a metre rule?
Detalhes da Resposta
A standard meter rule has markings that are usually every millimeter (1 mm). The least count, which is the smallest measurement that can be accurately read, is often 1 mm.
The least possible error is generally considered to be half of the smallest division, so it is ±0.05cm (or ±0.5mm).
Pergunta 30 Relatório
One of these is not the use of an electroscope
Detalhes da Resposta
Measuring ionization current in air:
This is typically not a function of an electroscope. While it can detect charge, it does not measure ionization currents, which require specialized equipment like an ionization chamber.
Pergunta 31 Relatório
The charge of magnitude 1.6 x 10 −19 C is placed in a uniform electric field of intensity 1200Vm−1 . Calculate its acceleration, if the mass of the charge is 9.1 x 10−31 kg
Detalhes da Resposta
To calculate the acceleration of a charge in an electric field, we start by determining the force acting on the charge. The force \( F \) experienced by a charge \( q \) in a uniform electric field \( E \) is given by the equation:
F = q * E
We are given:
Substituting these values into the equation for force:
F = 1.6 x 10-19 C * 1200 V/m
This results in:
F = 1.92 x 10-16 N
Next, we use Newton’s second law of motion to find the acceleration \( a \) of the charge. This law is given as:
F = m * a
Rearranging for \( a \), we have:
a = F / m
We know:
Substituting these values in the equation for acceleration:
a = \(\frac{1.92 x 10^{-16} N}{9.1 x 10^{-31} kg}\)
Calculating the above expression gives:
a ≈ 2.11 x 1014 ms-2
Therefore, the acceleration of the charge is approximately 2.11 x 1014 ms-2.
Pergunta 32 Relatório
An air force jet flying with a speed of 335m/s went past an anti-aircraft gun. How far is the aircraft 5s later when the gun was fired?
Detalhes da Resposta
To solve this problem, we need to determine how far the aircraft travels in the 5 seconds after it passes the anti-aircraft gun. The problem gives us two key pieces of information:
To find the distance traveled, we use the formula for distance:
Distance = Speed × Time
Plugging in the given values:
Distance = 335 m/s × 5 s
Calculating this, we get:
Distance = 1675 meters
This means the aircraft is 1675 meters away from the point where it passed the anti-aircraft gun after 5 seconds.
Pergunta 33 Relatório
An example of a non-rechargeable cell is
Detalhes da Resposta
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Pergunta 34 Relatório
The process of adding impurities to a semiconductor material to increase its conductivity is
Detalhes da Resposta
The process you are referring to is called doping. In simple terms, doping is the method of intentionally introducing impurities into an extremely pure semiconductor to change its electrical properties, which increases its conductivity.
Semiconductors, like silicon or germanium, are materials that have electrical conductivity between conductors (like metals) and insulators (like glass). By adding impurities, we can control and enhance their ability to conduct electricity. These impurities are atoms of other elements that either have more or fewer electrons in their outer energy levels compared to those in the semiconductor.
When you add impurities with more electrons, it creates an n-type semiconductor because of the extra *negative* charge carriers (electrons). Conversely, adding impurities with fewer electrons makes a p-type semiconductor, as it creates 'holes' which act as positive charge carriers.
This process of doping is essential for creating various semiconductor devices, like diodes, transistors, and integrated circuits, which are foundational components in all electronic devices. Hence, doping plays a crucial role in the functionality and efficiency of electronic systems.
Pergunta 35 Relatório
The capacitance of a capacitor, C, is inversely proportional to
Detalhes da Resposta
The capacitance of a capacitor is primarily determined by three key factors: the area of the plates, the distance between the plates, and the dielectric material used between the plates.
Capacitance (C) is calculated using the formula:
\(C = \frac{\varepsilon A}{d}\)
Where:
Let's analyze the relationship:
In summary, the capacitance of a capacitor is inversely proportional to the distance between the plates. Hence, you increase capacitance by decreasing the distance between the plates.
Pergunta 36 Relatório
Calculate the magnetic force on an electron in a magnetic field of flux density 10T, with a velocity of 3 x 107 m/s at 60º to the magnetic field (e = 1.6 x 10−19 C)
Detalhes da Resposta
The magnetic force on an electron in a magnetic field (F) = q v Bsinθ
B = 10T, q = 3 x 107 m/, θ = 60º and q = 1.6 x 10−19 C
F = 1.6 x 10−19 x 3 x 107 x 10 x sin 60º ≊ 4.162 × 10−11 N
Pergunta 37 Relatório
Bile is a greenish alkaline liquid which is stored in the
Detalhes da Resposta
Bile is a greenish alkaline liquid that plays a crucial role in the digestive process, particularly in the digestion and absorption of fats. It is produced in the liver, but it is not stored there. Instead, the bile is transported to a small organ where it is concentrated and stored until the body needs it for digestion. This organ is the gall bladder.
The gall bladder stores the bile and releases it into the small intestine when food, especially fatty food, enters the digestive tract. This helps in breaking down the fats into smaller droplets, making it easier for enzymes to digest them.
To sum up, the gall bladder is the organ responsible for storing bile.
Pergunta 38 Relatório
The efficiency of a cell with internal resistance of 2Ω supply current to a 6Ω resistor is
Detalhes da Resposta
To determine the efficiency of a cell with an internal resistance of 2 Ω while supplying current to a 6 Ω resistor, we can use the concept of power dissipation. Efficiency in this context is the ratio of the power delivered to the external resistor to the total power supplied by the cell. It can be calculated using the formula:
Efficiency (%) = (Power across load resistor / Total power output by cell) × 100
Let's break it down step by step:
The efficiency of the cell when supplying current to a 6 Ω resistor with an internal resistance of 2 Ω is 75%.
Pergunta 39 Relatório
A hydrometer of mass y kg and volume 2y x 10−5 m3 floats in a fluid with 20% of its volume above the fluid, what is the density of the fluid?
Detalhes da Resposta
To find the density of the fluid, we need to apply the principle of floatation, which states that the weight of the fluid displaced by the submerged part of the object is equal to the weight of the object. Let's walk through the steps:
Step 1: Understand the volume submerged
The hydrometer has a total volume of 2y x 10-5 m3. It floats with 20% of its volume above the fluid. Hence, 80% of its volume is submerged in the fluid.
Submerged Volume, Vsub = (0.80) x (2y x 10-5 m3) = 1.6y x 10-5 m3
Step 2: Apply the principle of floatation
The weight of the fluid displaced equals the weight of the hydrometer.
Weight of hydrometer = Mass x Gravity = y kg x g (where g is the acceleration due to gravity). For the purpose of calculations, g can be considered as 9.81 m/s2.
Weight of displaced fluid = Density of fluid (ρfluid) x Submerged Volume x g
According to the principle of floatation:
y x g = ρfluid x 1.6y x 10-5 m3 x g
g is common on both sides and can be canceled out:
y = ρfluid x 1.6y x 10-5
Step 3: Solving for the density of the fluid
ρfluid = y / (1.6y x 10-5)
The y on both numerator and denominator cancels out:
ρfluid = 1 / (1.6 x 10-5)
ρfluid = 6.25 x 104 kg/m3
Thus, the density of the fluid is 6.25 x 104 kg/m3.
Pergunta 40 Relatório
Detalhes da Resposta
In a series resonant circuit, the current flowing in the circuit is at its maximum. Let me explain why:
In a series resonant circuit, we have a resistor (R), inductor (L), and capacitor (C) connected in series with an AC source. At a particular frequency called the resonant frequency, these circuits exhibit some unique characteristics. This resonant frequency is determined by the values of the inductor and capacitor and is given by the formula:
f₀ = 1 / (2π√(LC))
At the resonant frequency:
Thus, in a series resonant circuit, when it is operating at its resonant frequency, the current flowing is at its maximum.
Gostaria de prosseguir com esta ação?