A carregar...
Pressione e Mantenha para Arrastar |
|||
Clique aqui para fechar |
Pergunta 1 Relatório
Two capacitors of 0.0003μF and 0.0006μF are connected in series, find their combined capacitance.
Detalhes da Resposta
When capacitors are connected in series, the formula to find their combined capacitance \(C_{\text{total}}\) is given by:
\[ \frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2} \]
where \(C_1\) and \(C_2\) are the capacitances of the individual capacitors. In this case, \(C_1 = 0.0003 \, \mu\text{F}\) and \(C_2 = 0.0006 \, \mu\text{F}\).
First, calculate the reciprocal of each capacitance:
\[ \frac{1}{C_1} = \frac{1}{0.0003} \]
\[ \frac{1}{C_2} = \frac{1}{0.0006} \]
Calculating each value:
\[ \frac{1}{0.0003} = \frac{10^6}{3} \] and \[ \frac{1}{0.0006} = \frac{10^6}{6} \]
Now, add these values together:
\[ \frac{1}{C_{\text{total}}} = \frac{10^6}{3} + \frac{10^6}{6} = \frac{10^6 \times 2}{6} + \frac{10^6 \times 1}{6} = \frac{10^6 \times 3}{6} = \frac{10^6}{2} \]
Finally, take the reciprocal of the resulting value to find \(C_{\text{total}}\):
\[ C_{\text{total}} = \frac{2}{10^6} = 0.0002 \, \mu\text{F} \]
So, the combined capacitance of the two capacitors in series is 0.0002 μF.
Pergunta 2 Relatório
An electron falls from an energy level of -5.44eV to another energy level, E. If the emitted photon is of wavelength 5.68 x 10−6 m, calculate the energy change. [ Plank's constant = 6.63 x 10−34 Js, emitted radiation speed = 3.0 x 108 ms−1 ]
Detalhes da Resposta
To find the energy change when an electron falls from one energy level to another, we need to calculate the energy of the emitted photon. This energy can be found using the formula:
E = hν or E = hc/λ
where:
Substitute these values into the equation:
E = (6.63 x 10-34 Js) * (3.0 x 108 ms-1) / (5.68 x 10-6 m)
First, calculate the numerator:
(6.63 x 10-34) * (3.0 x 108) = 1.989 x 10-25 J·m
Then, divide by the wavelength:
E = 1.989 x 10-25 J·m / 5.68 x 10-6 m = 3.5 x 10-20 J
Therefore, the energy change when the electron falls is approximately 3.5 x 10-20 J.
Checking the options provided, the closest value is 3.49 x 10-20 J.
Pergunta 3 Relatório
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called
Detalhes da Resposta
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called the friction force.
Let me explain each of the options to clarify why friction force is the correct answer:
In summary, friction force is the force that acts to oppose sliding between surfaces in contact and acts tangentially, making it the correct answer.
Pergunta 4 Relatório
Calculate the power of an object which moves through a distance of 500cm in 1s on a frictionless surface by a horizontal force of 50N
Detalhes da Resposta
To calculate the power of an object, we need to use the formula for power in terms of work done over time. The formula is:
Power (P) = Work Done (W) / Time (t)
First, let's find the work done on the object. Work done can be calculated using the formula:
Work Done (W) = Force (F) × Distance (d)
Given:
Substituting the values into the formula for work done, we get:
Work Done (W) = 50 N × 5 m = 250 Joules
Next, we consider the time it took for the object to move this distance:
Now, substituting the work done and time into the power formula:
Power (P) = 250 Joules / 1 s = 250 Watts
Thus, the power of the object is 250 Watts.
Pergunta 5 Relatório
The fourth overtone of a closed pipes is 900Hz, its fundamental frequency is
Detalhes da Resposta
To solve this problem, let's first understand how sound works in a closed pipe. A closed pipe has one end closed and another end open. Sound waves inside such a pipe create standing waves, where nodes (points of no movement) and antinodes (points of maximum movement) are formed.
For a closed pipe, the fundamental frequency (also called the first harmonic) has one node at the closed end and one antinode at the open end. The wavelength is four times the length of the pipe.
The overtone sequence for a closed pipe includes only odd harmonics: 1st (fundamental), 3rd, 5th, 7th, etc. The nth overtone is the 2nth + 1 harmonic. The equation for the frequency of a harmonic in a closed pipe is:
f_n = n * f_1, where f_n is the frequency of the nth harmonic and f_1 is the fundamental frequency
In this case, the fourth overtone corresponds to the 9th harmonic because 2 * 4 + 1 = 9. Therefore, we have:
900 Hz = 9 * f_1
To find the fundamental frequency (f_1), we solve for f_1:
f_1 = 900 Hz / 9
f_1 = 100 Hz
Therefore, the fundamental frequency is 100 Hz.
Pergunta 6 Relatório
The web-feet of frogs and toads is basically for
Detalhes da Resposta
The web-feet of frogs and toads is primarily for swimming. These webbed feet act like paddles, allowing the frog or toad to move efficiently through the water. When the animal spreads its toes, the webbing provides a larger surface area, which gives better propulsion in the water. This adaptation is essential, as many species of frogs and toads spend a significant amount of their time in aquatic environments where efficient swimming helps them in searching for food, escaping predators, and traveling from one place to another. In essence, the webbed feet are a vital feature for their aquatic lifestyle.
Pergunta 7 Relatório
Detalhes da Resposta
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Pergunta 8 Relatório
Using the circuit above, at resonance
Detalhes da Resposta
To understand the concept of resonance in an electrical circuit, it is crucial to know that resonance occurs when the inductive reactance and capacitive reactance are equal in magnitude. This typically happens in a series RLC (Resistor, Inductor, Capacitor) circuit. At resonance, the impedance of the circuit is purely resistive, meaning the circuit behaves as if it only contains a resistor. As a result, the voltages across the inductor and capacitor can be compared at resonance.
In this particular situation, the voltage across the inductor (VL) and the voltage across the capacitor (VC) are of interest due to their roles in resonance:
Thus, the correct expression of interest in relation to resonance is VL = VC, which indicates that the voltage across the inductor is equal in magnitude but opposite in phase to the voltage across the capacitor.
Pergunta 9 Relatório
Which of the following operates based on magnetic effect of electric current?
Detalhes da Resposta
The device that operates based on the magnetic effect of electric current is the Dynamo.
To explain further, let's look at the concept of the magnetic effect of electric current:
A Dynamo is a device that converts mechanical energy into electrical energy. It operates based on the phenomenon called electromagnetic induction, which occurs due to the magnetic effect of electric current. When a coil of wire within the dynamo rotates in the presence of a magnetic field, it induces an electric current in the coil. Thus, the operation of a dynamo relies on the interaction between electric current and magnetic fields.
To contrast with other options:
Pergunta 10 Relatório
The power of a convex lens of focal length 20cm is
Detalhes da Resposta
The power of a lens is a measure of its ability to converge or diverge light. It is defined as the reciprocal (or inverse) of the focal length of the lens. The formula for calculating the power (P) of a lens in diopters (D) is given by:
P = 1/f
where:
In this case, the focal length given is 20 cm. To apply the formula, we first need to convert this focal length into meters because the diopter is the reciprocal of the focal length in meters:
f = 20 cm = 0.20 m
Now, substitute the focal length in meters into the formula for power:
P = 1 / 0.20
P = 5.00 D
Thus, the power of the convex lens is 5.00 diopters. This indicates that the lens is capable of converging light at a distance of 5.00 meters.
Pergunta 11 Relatório
The value of R in the above circuit to make the galvanometer measure 2A is
Detalhes da Resposta
Given: Ig = 50mA = 0.05A, I to be measured = 2A, r = 2Ω , Is = I - Ig = 2 - 0.05 = 1.95A
Shunt(R) = IgIs x r
R = 0.051.95 x 10 = 0.2564Ω
Pergunta 12 Relatório
Rainbow is formed when sunlight undergoes
Detalhes da Resposta
A rainbow is formed through a combination of three processes: reflection, refraction, and dispersion. Let's break down each process to understand how a rainbow forms:
1. Refraction: When sunlight enters a raindrop, it bends or changes direction. This bending of light is known as **refraction**. Different colors of sunlight bend by different amounts because they have different wavelengths.
2. Reflection: Once inside the raindrop, the light gets reflected off the inside surface of the drop. This reflection sends the light back out of the raindrop at different angles.
3. Dispersion: As the light exits the raindrop, it bends again (refraction). Because each color bends by a different amount, the sunlight is spread out into its component colors, creating a spectrum. This spreading into a spectrum is called **dispersion**.
All three processes contribute to the formation of a rainbow. The combination of **refraction, reflection, and dispersion** results in the beautiful arc of colors that we see in the sky.
Pergunta 13 Relatório
Detalhes da Resposta
To solve this problem, we need to understand the relationship between pressure, volume, and temperature of a gas. The relevant law here is the **Combined Gas Law**, which is expressed as:
(P1 * V1) / T1 = (P2 * V2) / T2
Where:
In the given problem:
Applying the Combined Gas Law:
(P1 * V1) / 300 = (2 * P1 * V2) / 400
Simplifying this equation:
V1/300 = 2V2/400
Multiply both sides by 400 to clear the fraction:
400 * V1 / 300 = 2 * V2
Which further simplifies to:
(4/3) * V1 = 2 * V2
Dividing both sides by 2:
(2/3) * V1 = V2
This shows that the final volume, V2, is **2/3 of the initial volume, V1**. Therefore, the volume of the gas will **decrease by 1/3**.
Pergunta 14 Relatório
Using the diagram above, the effective force pushing it forward at an angle 60º is
Detalhes da Resposta
To determine the effective force pushing the object forward at an angle of 60º, we need to resolve the given force into its components. Specifically, we are interested in the horizontal component of the force, as this is the part that effectively pushes the object forward.
The general formula to calculate the horizontal component of a force (Fx) when the force is applied at an angle (θ) is:
Fx = F * cos(θ)
Where:
Assuming the magnitude of the force applied (F) is 50N, then the effective forward force can be calculated as follows:
Fx = 50N * cos(60º)
Using the trigonometric value:
cos(60º) = 0.5
Therefore:
Fx = 50N * 0.5
Fx = 25N
Hence, the effective force pushing it forward at an angle of 60º is 25.00N. Therefore, the correct answer is 25.00N.
Pergunta 15 Relatório
What is the colour of red rose under a blue light?
Detalhes da Resposta
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Pergunta 16 Relatório
An effort of 40N is applied on a machine to lift a mass of 60kg. Determine the mechanical advantage of the machine [ g = 10ms2 ]
Detalhes da Resposta
To determine the Mechanical Advantage (MA) of a machine, we use the formula:
MA = Load / Effort
Here, the Load is the weight of the mass being lifted, and the Effort is the force applied on the machine.
First, we need to calculate the Load. The Load is obtained by multiplying the mass of the object by the acceleration due to gravity (g = 10 m/s2).
So, the Load (weight of the mass) is:
Load = Mass × Gravity = 60 kg × 10 m/s2 = 600 N
The Effort given is 40 N.
Now, we can calculate the Mechanical Advantage:
MA = Load / Effort = 600 N / 40 N = 15
Therefore, the Mechanical Advantage of the machine is 15.
Pergunta 17 Relatório
The equivalent capacitance of the capacitors in the circuit above
Detalhes da Resposta
apacitance in parallel = one at the top + one under = 2C
The two in the middle are in series = C2
The equivalent capacitance of the capacitors in the circuit above = C2 + 2C = 52 C
Pergunta 18 Relatório
The diaphragm in the camera is similar to what part of the eyes?
Detalhes da Resposta
The diaphragm in a camera is similar to the iris in the human eye.
Here's a simple explanation:
In summary, the iris acts like a natural diaphragm, regulating the light that passes through the eye, much like the diaphragm does in a camera.
Pergunta 19 Relatório
Inbreeding is highly discouraged in humans because it may
Detalhes da Resposta
Inbreeding is the process where closely related individuals, like cousins or siblings, mate and produce offspring. **This practice is highly discouraged in humans for several reasons, but a significant concern is the potential for an outbreak of hereditary diseases.**
Here’s why inbreeding is problematic:
Therefore, **to promote genetic diversity and reduce the risk of hereditary diseases in offspring, inbreeding is discouraged in human populations**. This way, offspring are less likely to inherit harmful genetic combinations that can lead to health problems.
Pergunta 20 Relatório
Calculate the value of electric field intensity due to a charge of 4μC if the force due to the charge is 8N
Detalhes da Resposta
To calculate the electric field intensity due to a charge, we need to use the formula:
Electric Field Intensity (E) = Force (F) / Charge (q)
In this problem, we are given that the force (F) is 8 Newtons (N) and the charge (q) is 4 microcoulombs (μC). First, we need to convert the charge from microcoulombs to coulombs:
1 microcoulomb (μC) = 1 x 10-6 coulombs (C)
Therefore, 4 μC = 4 x 10-6 C.
Now we can use the formula to find the electric field intensity:
E = F / q
E = 8 N / (4 x 10-6 C)
E = 8 / 4 x 106
E = 2 x 106
Thus, the value of the electric field intensity is 2 x 106 N/C.
Pergunta 21 Relatório
The bursting of water pipes during very cold weather, when the water in the pipes form ice could be attributed to
Detalhes da Resposta
The bursting of water pipes during very cold weather is primarily attributed to the expansion of water on freezing.
Here's why this happens:
1. **Normal water behavior below freezing:** Typically, when most substances freeze, they contract because the molecules get closer together. However, water behaves differently due to its unique molecular structure. As water freezes, it forms a crystalline structure that makes ice less dense than liquid water, causing it to expand.
2. **Effect of expansion:** When water inside a pipe freezes, it expands. This expansion puts tremendous pressure on the pipe walls because the solid ice takes up more space than the liquid water. Most pipes are rigid and do not have enough room to accommodate the expanded volume of ice.
3. **Resulting pressure:** The increased pressure caused by the expanding ice can cause the pipe to crack or burst, especially if there is no other outlet for the water or ice to expand into.
In summary, pipes burst during cold weather primarily due to the expansion of water as it freezes, which creates pressure that the pipe cannot withstand. This phenomenon is due to the unique property of water where it expands upon freezing, unlike most other substances which contract in their solid form.
Pergunta 22 Relatório
I clear II sharp III poor IV dark
Which of the above happens when the hole of a pinhole camera is diminished?
Detalhes da Resposta
A pinhole camera is a simple camera device that uses a tiny hole to project an inverted image of the scene in front of it onto a surface at the back of the camera. When you diminish the hole of a pinhole camera, meaning you make the hole smaller, a few effects occur on the resulting image. Here’s what happens:
Therefore, reducing the size of the pinhole in a pinhole camera results in the image becoming both darker and sharper.
Answer: II only (The image becomes sharper.)
Pergunta 23 Relatório
The stress experienced by a wire of diameter
Detalhes da Resposta
Stress is defined as the force applied per unit area. In the context of a wire being loaded by a weight, the weight acts as the force exerted, and the cross-sectional area of the wire is the area over which this force is distributed.
Force (F): This is given by the weight, which is y2 N.
Cross-sectional Area (A): For a wire with a diameter, the area can be calculated using the formula for the area of a circle: A = πr2, where r is the radius of the wire.
Given the diameter of the wire as yπ meters, the radius (r) is half of the diameter:
r = (yπ)/2
So, the area (A) is:
A = π[(yπ)/2]2
Simplifying the area:
A = π(y2π2/4)
A = y2π3/4
Stress (σ) is given by the formula:
σ = F/A
Substituting the given weight (force) and the calculated area:
σ = (y2) / (y2π3/4)
By simplifying the expression:
σ = (4y2) / (y2π3)
Cancel out y2 from numerator and denominator:
σ = 4/π2 Nm−2
Thus, the correct stress experienced by the wire is 4π Nm−2, as provided in one of the options. The explanation shows clearly how the force and area are used to derive the stress experienced by the wire.
Pergunta 24 Relatório
A monochromatic light is one that
Detalhes da Resposta
A monochromatic light is one that has a single wavelength or color. This means that it consists of light waves that all have the same frequency, resulting in a uniform appearance without any variation.
Pergunta 25 Relatório
The process by which plants loss water to the atmosphere is
Detalhes da Resposta
The process by which plants lose water to the atmosphere is called transpiration.
Transpiration is a fundamental process in the life of a plant. During this process, water is absorbed by the roots from the soil and is then transported through the xylem vessels in the stem and leaves. Once in the leaves, water evaporates into the atmosphere from the surface of tiny pores known as stomata.
Here's a simple breakdown of how transpiration works:
Transpiration is crucial for a number of reasons:
Understanding transpiration is essential in fields like agriculture, where managing water resources efficiently can significantly impact plant growth and crop yield.
Pergunta 26 Relatório
Infra-red thermometers work by detecting the
Detalhes da Resposta
Infra-red thermometers work by detecting the radiation from the body and converting it to temperature. These thermometers are designed to measure the infrared radiation, also known as heat radiation, emitted by objects. All objects with a temperature above absolute zero emit infrared radiation. The thermometer's sensor captures this radiation and converts it into an electrical signal that can be read as a temperature measurement. This method allows for quick, non-contact temperature readings, which is why infrared thermometers are often used in medical settings, industrial applications, and more.
Pergunta 27 Relatório
Bile is a greenish alkaline liquid which is stored in the
Detalhes da Resposta
Bile is a greenish alkaline liquid that plays a crucial role in the digestive process, particularly in the digestion and absorption of fats. It is produced in the liver, but it is not stored there. Instead, the bile is transported to a small organ where it is concentrated and stored until the body needs it for digestion. This organ is the gall bladder.
The gall bladder stores the bile and releases it into the small intestine when food, especially fatty food, enters the digestive tract. This helps in breaking down the fats into smaller droplets, making it easier for enzymes to digest them.
To sum up, the gall bladder is the organ responsible for storing bile.
Pergunta 28 Relatório
What is the least possible error encountered when taking measurement with a metre rule?
Detalhes da Resposta
A standard meter rule has markings that are usually every millimeter (1 mm). The least count, which is the smallest measurement that can be accurately read, is often 1 mm.
The least possible error is generally considered to be half of the smallest division, so it is ±0.05cm (or ±0.5mm).
Pergunta 29 Relatório
A practical application of total internal reflection is found in
Detalhes da Resposta
A practical application of total internal reflection is found in fiber optics.
To understand this, let's break it down:
When light travels from one medium to another (such as from glass to air), it changes direction. This is known as refraction. However, there is a phenomenon called total internal reflection which occurs when light is traveling within a denser medium towards a less dense medium (like from glass to air) and hits the boundary at an angle greater than a certain critical angle. Instead of passing through, the light is completely reflected back into the denser medium.
Fiber optics technology makes use of this principle. In fiber optics, light is transmitted along the core of a thin glass or plastic fiber. The core is surrounded by another layer called the cladding. This cladding has a lower refractive index than the core, which facilitates total internal reflection. As a result, the light continuously reflects internally along the length of the fiber, allowing it to travel long distances with minimal loss.
This property is harnessed in various applications such as in high-speed telecommunication systems, medical equipment like endoscopes, and other technologies that require the transmission of data over long distances with high efficiency.
Pergunta 30 Relatório
Which of these gas laws is equivalent to workdone
Detalhes da Resposta
To understand which of these gas laws is equivalent to work done, we must first understand the basic concept of work in the context of gases. For gases, work is done when there is a change in volume under pressure, typically expressed as W = P ΔV, where W is work, P is pressure, and ΔV is the change in volume.
Let's consider the given gas laws:
Among these, Boyle's law relates directly to work done because it involves a change in volume at constant temperature, implying that work occurs as a gas expands or compresses. The equation P₁V₁ = P₂V₂ is foundational for calculating work done in reversible processes, which aligns with the expression for work done on a gas, W = P ΔV. Thus, **Boyle's law** is most directly connected to the concept of work done on a gas.
Pergunta 31 Relatório
The average translational kinetic energy of gas molecules depends on
Detalhes da Resposta
The average translational kinetic energy of gas molecules is directly related to the temperature of the gas. This relationship is based on the principles of kinetic molecular theory, which explains the behavior of gas molecules in terms of their motion.
Let's break this down simply:
1. Temperature and Kinetic Energy:
The average translational kinetic energy of gas molecules is given by the equation:
\( KE_{avg} = \frac{3}{2} k_B T \)
where \( KE_{avg} \) is the average translational kinetic energy, \( k_B \) is the Boltzmann constant, and \( T \) is the absolute temperature in Kelvin. This formula shows that the kinetic energy is directly proportional to the temperature.
2. What This Means:
As the temperature of a gas increases, the molecules move faster, which increases their translational kinetic energy. Conversely, as the temperature decreases, the molecules slow down, resulting in lower kinetic energy.
It is important to note that this relation is independent of the pressure and the number of moles of the gas. While pressure and the number of moles do affect the overall behavior of a gas, they do not directly influence the average translational kinetic energy of individual molecules.
Therefore, the correct explanation is that the average translational kinetic energy of gas molecules depends on temperature only.
Pergunta 32 Relatório
What will be the weight of a man of mass 60kg standing in a lift if the lift is descending vertically at 3ms2 ?
Detalhes da Resposta
To find the apparent weight of a man of mass 60 kg standing in a descending lift, we first need to understand the concept of apparent weight. Apparent weight is the force that the man feels as his weight due to the reaction of the lift floor on him. When the lift accelerates, the apparent weight changes from his actual weight.
In this case, the lift is descending with a constant velocity of 3 m/s2. Since the acceleration is downward, it means the lift is accelerating negatively compared to an upward acceleration.
The formula to find the apparent weight (Wapparent) when in a lift is:
Wapparent = m(g - a)
Where:
Substituting these values into the formula, we get:
Wapparent = 60 (9.8 - 3)
Calculating further:
Wapparent = 60 × 6.8
Wapparent = 408 N
The closest option to 408 N in the answers provided is 420 N. Therefore, the correct answer is 420 N.
Pergunta 33 Relatório
Calculate the depth of a swimming pool if the apparent depth is 10cm. ( Refractive index of water = 1.33 )
Detalhes da Resposta
To calculate the real depth of a swimming pool given the apparent depth, we can use the concept of refraction of light. When light passes from one medium to a denser medium, it bends towards the normal. This bending effect causes objects submerged in water to appear closer to the surface than they actually are. The formula to relate these depths is given by:
Real Depth = Apparent Depth × Refractive Index
Given the problem:
Using the formula:
Real Depth = 10 cm × 1.33
Calculating the above:
Therefore, the depth of the swimming pool is 13.3cm.
Pergunta 34 Relatório
The land and sea breeze is attributed to
Detalhes da Resposta
The phenomenon of land and sea breeze is primarily attributed to convection.
To understand this, let's first look at what land and sea breezes are:
Land Breeze: At night, the land cools down faster than the sea. The cooler, denser air from the land moves towards the sea, and this is known as a land breeze.
Sea Breeze: During the day, the land heats up more quickly than the sea. The warmer, lighter air over the land rises, and the cooler air from the sea moves in to take its place. This movement of air from the sea to the land is known as a sea breeze.
Both of these processes involve the movement of air due to differences in temperature and density, which is essentially the process of convection.
Convection is the transfer of heat through a fluid (like air or water) and is responsible for moving air masses and creating these breezes. The warm air, being less dense, rises, and the cooler, denser air moves in to replace it.
In contrast, conduction is the transfer of heat through a solid material, and radiation is the transfer of heat in the form of electromagnetic waves, neither of which primarily drive the processes of these breezes, making convection the key player.
Pergunta 35 Relatório
A force of 10N extends a spring of natural length 1m by 0.02m, calculate the length of the spring when the applied force is 40N.
Detalhes da Resposta
To solve this problem, we will use Hooke's Law. Hooke's Law states that the force needed to extend or compress a spring by some distance is proportional to that distance. Mathematically, it is represented as:
F = k * x
where:
Firstly, we need to find the spring constant k. We know that a force of 10N extends the spring by 0.02m. Therefore, using Hooke's Law:
10N = k * 0.02m
From this, we can solve for k:
k = 10N / 0.02m = 500N/m
Now that we have determined the spring constant, let's calculate the extension caused by a force of 40N:
Using Hooke's Law again:
F = k * x
40N = 500N/m * x
Solving for x:
x = 40N / 500N/m = 0.08m
This means that the spring is extended by 0.08m when a force of 40N is applied. Therefore, the length of the spring (natural length plus extension) becomes:
1.00m + 0.08m = 1.08m
Thus, the **length** of the spring when the applied force is 40N is 1.08m.
Pergunta 36 Relatório
When thermal energy in a solid is increased, the change in state is called
Detalhes da Resposta
When the thermal energy in a solid is increased, the solid particles gain energy and begin to vibrate more vigorously. As the temperature rises, these particles eventually have enough energy to overcome the forces holding them in their fixed positions. This leads to a change of state from a solid to a liquid. This process is known as melting.
To further understand this, imagine an ice cube. As it absorbs heat, it gains energy, and the ice (which is a solid) starts to turn into water (which is a liquid). This transition is what we refer to as melting.
Thus, the term that describes this change of state, when a solid is heated and turns into a liquid, is melting.
Pergunta 37 Relatório
The force of attraction between molecules of the same substance is
Detalhes da Resposta
The force of attraction between molecules of the same substance is called cohesion.
To understand this simply:
Cohesion refers to the attractive forces acting between similar molecules. For example, water molecules attract each other due to hydrogen bonding, which is a strong intermolecular force.
Let's break down some important concepts:
In summary, **cohesion** is the force that keeps the molecules of the same substance, like water, attracting each other.
Pergunta 38 Relatório
A rectifier is a device that changes
Detalhes da Resposta
A rectifier is a device that changes alternating current (A.C) to direct current (D.C). Alternating current is the type of electrical current that changes direction periodically, while direct current flows in a single, constant direction.
Rectifiers are essential in numerous electrical devices, particularly those that require a stable and consistent power supply. For example, most electronic devices like mobile phone chargers, laptop adapters, and televisions operate on D.C. power, and rectifiers convert the household A.C. power supply to D.C. so that these devices can function properly.
In summary, a rectifier converts A.C., which is alternating power supply, into D.C., which is a steady flow of electricity in one direction, making it usable for electronic devices and various applications that require direct current.
Pergunta 39 Relatório
A mass of gas at 40mmHg is heated from 298k to 348k at constant volume. Cal the pressure exerted by the gas.
Detalhes da Resposta
To determine the new pressure exerted by the gas when it is heated, we'll apply **Gay-Lussac's Law**. This law states that at constant volume, the pressure of a given amount of gas is directly proportional to its absolute temperature. Mathematically, it can be expressed as:
P1/T1 = P2/T2
Where:
By rearranging the formula to solve for the final pressure (P2), we get:
P2 = P1 * (T2/T1)
Now, insert the given values into the equation:
P2 = 40 mmHg * (348 K / 298 K)
Perform the calculations:
P2 = 40 mmHg * (348 / 298)
P2 = 40 mmHg * 1.1678
P2 = 46.71 mmHg
So, the new pressure exerted by the gas when it is heated from 298 K to 348 K at constant volume is 46.71 mmHg.
Pergunta 40 Relatório
At absolute zero temperature, the average velocity of the molecules
Detalhes da Resposta
At absolute zero temperature, which is defined as 0 Kelvin or -273.15 degrees Celsius, the energy of molecular motion ceases. This means that the molecules theoretically have minimal energy, and hence, their motion stops entirely. Therefore, the average velocity of the molecules is zero. In reality, absolute zero is a theoretical limit, and it is practically unreachable, but it serves as a concept to help in understanding the behavior of molecules at extremely low temperatures. Thus, under this theoretical condition, the average motion of molecules would be nonexistent. In summary, the average velocity of the molecules at absolute zero is zero.
Gostaria de prosseguir com esta ação?