Laden....
|
Druk & Houd Vast om te Verslepen |
|||
|
Klik hier om te sluiten |
|||
Vraag 1 Verslag
Which process(es) is/are involved in the turning of starch iodide paper blue-black by chlorine gas?
Antwoorddetails
The process involved in the turning of starch iodide paper blue-black by chlorine gas is option number 3: chlorine oxidizes the iodide ion to produce iodine which attacks the starch to give the blue-black color. When chlorine gas comes in contact with iodide ions on the starch iodide paper, it oxidizes the iodide ion to form iodine. The iodine that is produced in this reaction is then able to react with the starch present on the paper to form a blue-black complex. This blue-black complex is formed due to the arrangement of the starch molecules and the iodine atoms in a way that causes them to absorb light at a specific wavelength, giving the blue-black color. Therefore, the blue-black color that is observed on the starch iodide paper is due to the reaction between iodine and starch, which is made possible by the oxidation of iodide ions by chlorine gas.
Vraag 2 Verslag
At 27°C, 58.5g of sodium chloride is present in 250cm3 of a solution. The solubility of sodium chloride at this temperature is?
(molar mass of sodium chloride = 111.0gmol−1 )
Antwoorddetails
Given the Mass of the salt = 58.5g
Volume = 250 cm3
= 0.25 dm3
Mass concentration = MassVolume
= 58.50.25
= 234 gdm−3
Solubility (in moldm−3
= 234111
= 2.11 moldm−3
≊
2.0 moldm−3
Vraag 3 Verslag
When chlorine water is exposed to bright sunlight, the following products are formed
Vraag 4 Verslag
Which of the following statements about catalyst is false?
Antwoorddetails
The false statement about catalysts is: "catalysts do not alter the mechanism of the reaction and never appear in the rate law." Catalysts are substances that speed up chemical reactions without being consumed in the process. They achieve this by reducing the activation energy needed for the reaction to occur. Enzymes are a type of biological catalysts. In a chemical reaction, a catalyst is not consumed and does not appear in the overall balanced equation. However, catalysts can alter the mechanism of a reaction by providing an alternative pathway with a lower activation energy. This alternative pathway can have a different rate-determining step, which means that the presence of the catalyst can change the rate law of the reaction. Therefore, the statement that catalysts do not alter the mechanism of the reaction and never appear in the rate law is false.
Vraag 5 Verslag
How many alkoxyalkanes can be obtained from the molecular formula C4 H10 O?
Antwoorddetails
Alkoxyalkanes have a general formula of R-O-R', where R and R' are alkyl groups. From the given molecular formula C4H10O, we can see that there are four carbon atoms, so the longest possible alkyl group is butyl (C4H9-). To form alkoxyalkanes, we need to attach an oxygen atom to the alkyl group. This can be done in three ways - by attaching the oxygen to one of the terminal carbon atoms (forming a primary alcohol), by attaching it to one of the central carbon atoms (forming a secondary alcohol), or by attaching it to the carbonyl carbon atom (forming an ester). So, we can obtain a maximum of three alkoxyalkanes from the given molecular formula. However, we need to take into account that there are different isomers possible for each type of alcohol or ester, depending on which carbon atom the oxygen is attached to. Therefore, the correct answer is (at least) 3.
Vraag 6 Verslag
Which of the following statements does not show Rutherford's account of Nuclear Theory? An atom contains a region
Antwoorddetails
Rutherford's account of Nuclear theory does not include the fact that atoms contain a massive region and cause deflection of from projectiles.
Vraag 8 Verslag
Hydrogen bond is a sort of
Antwoorddetails
Hydrogen bond is a covalent intermolecular bond that exists between hydrogen and highly electronegative elements like nitrogen, oxygen and fluorine.
Vraag 9 Verslag
The hybridization in the compound CH3−CH2−C≡H is
Antwoorddetails
The hybridization in a and b is sp3 hybridization while in c and d is sp hybridization.
Vraag 10 Verslag
Na2 CO3 + 2HCl → 2NaCl + H2 O + CO2
The indicator most suitable for this reaction should have a pH equal to
Antwoorddetails
Methyl orange is the best indicator for the reaction with range 3.1 - 4.4.
Vraag 11 Verslag
Which of the following pairs cannot be represented with a chemical formula?
Antwoorddetails
The pair that cannot be represented with a chemical formula is air and bronze. Air is a mixture of several gases, primarily nitrogen (N₂) and oxygen (O₂), with small amounts of other gases such as argon (Ar), carbon dioxide (CO₂), and neon (Ne). Since air is a mixture and not a pure substance, it cannot be represented by a chemical formula. Bronze, on the other hand, is an alloy composed mainly of copper (Cu) and tin (Sn) with small amounts of other metals. The composition of bronze can vary depending on the specific alloy, but it can be represented by a chemical formula such as CuSn. Sodium chloride (NaCl) is a compound composed of sodium (Na) and chlorine (Cl) in a fixed ratio of 1:1, and it can be represented by a chemical formula. Similarly, copper (Cu) and sodium chloride (NaCl) can each be represented by a chemical formula. Cu is an element, so its chemical formula is simply its symbol, while NaCl is a compound with a fixed ratio of sodium and chlorine atoms. Caustic soda (sodium hydroxide, NaOH) and washing soda (sodium carbonate, Na₂CO₃) are both compounds that can be represented by chemical formulas. NaOH consists of one sodium atom, one oxygen atom, and one hydrogen atom, while Na₂CO₃ consists of two sodium atoms, one carbon atom, and three oxygen atoms.
Vraag 12 Verslag
X is a substance which liberates CO2 on treatment with concentrated H2 SO4 . A warm solution of X can decolorize acidified KMnO4 . X is
Antwoorddetails
It should be noted that for X to liberate CO2
, X must be a carbonate or an oxalate. Since X decolorizes KMnO4
, X must be an oxalate.
Therefore, X is H2
C2
O4
.
Vraag 13 Verslag
The cost of discharging 6.0g of a divalent metal, X from its salt is ₦12.00. What is the cost of discharging 9.0g of a trivalent metal, Y from its salt under the same condition?
[X = 63, Y = 27, 1F = 96,500C]
Antwoorddetails
For X: X2+
+ 2e−
→
X
2F = 63g
xF = 6g
x = 6×263=421F
421
F = N12.00
1F = 12421
= N63.00
1F is equivalent to N63.00.
For Y: Y3+
+ 3e−
→
Y
3F = 27g
xF = 9g
x = 3×927
= 1F
1F = N63.00
Vraag 14 Verslag
Which of the following metals is the most essential in the regulation of blood volume, blood pressure and osmotic equilibrium?
Antwoorddetails
The metal that is most essential in the regulation of blood volume, blood pressure, and osmotic equilibrium is sodium. Sodium is a key electrolyte that helps maintain the balance of fluids in the body, including blood volume and blood pressure. Sodium ions are positively charged and are attracted to negatively charged ions, such as chloride (Cl-) and bicarbonate (HCO3-), which together help regulate the pH of the blood. Sodium is also essential for maintaining osmotic equilibrium, which refers to the balance of solutes between cells and the extracellular fluid. Osmotic equilibrium is critical for proper cellular function and is regulated by the movement of water and electrolytes, including sodium, in and out of cells. While the other metals listed (zinc, manganese, and iron) are important for various functions in the body, such as enzyme activity and oxygen transport, they are not directly involved in regulating blood volume, blood pressure, and osmotic equilibrium in the same way that sodium is. Therefore, the answer is not options 1, 2, or 4, and the correct answer is: sodium.
Vraag 15 Verslag
The shapes of water, ammonia, carbon (iv) oxide and methane are respectively
Antwoorddetails
Vraag 16 Verslag
Burning magnesium ribbon in air removes which of the following
(i) oxygen (ii) nitrogen (iii) argon and (iv) carbon(iv)oxide?
Antwoorddetails
Burning magnesium ribbon in air will remove oxygen (option i) from the air, but not nitrogen (option ii), argon (option iii), or carbon dioxide (option iv). When magnesium burns, it reacts with oxygen in the air to form magnesium oxide. The reaction can be represented by the following equation: 2Mg(s) + O2(g) → 2MgO(s) The magnesium in the ribbon combines with oxygen in the air to form solid magnesium oxide. This reaction is exothermic, which means that it releases heat and light energy. So, when magnesium ribbon is burned in air, it consumes the oxygen in the air to form magnesium oxide. However, nitrogen, argon, and carbon dioxide are not chemically reactive with magnesium, and therefore are not removed from the air by the burning of magnesium ribbon. In summary, the correct option is (i) only - burning magnesium ribbon in air removes oxygen only.
Vraag 17 Verslag
The emission of two successive beta particles from the nucleus 3215P will produce
Antwoorddetails
Vraag 18 Verslag
An element Z contains 80% of 168 Z and 20% of 188 Z. Its relative atomic mass is
Antwoorddetails
R.A.M of Z = 16(80100)+18(20100)
= 12.8+3.6
= 16.4
Vraag 19 Verslag
If the cost of electricity required to discharge 10g of an ion X3+ is N20.00, how much would it cost to discharge 6g of ion Y2+ ?
[1 faraday = 96,500C, atomic masses are X = 27, Y = 24]
Antwoorddetails
X3+
+ 3e−
→
X
3F = 27g
xF = 10g
x3=1027⟹x=109F
109
F ≡
N20.00
1F is equivalent to x
1109=x20
910=x20⟹x=N18.00
1F is equivalent to N18.00.
Y2+
+ 2e−
→
Y
2F = 24g
xF = 6g
x = 6×224=12F
1F = N18.00
12
F = 12×N18.00
= N9.00
Vraag 20 Verslag
Methane is prepared in the laboratory by heating a mixture of sodium ethanoate with soda lime. The chemical constituent(s) of soda lime is/are
Antwoorddetails
The chemical constituent of soda lime used to prepare methane in the laboratory is Ca(OH)2 (calcium hydroxide) and NaOH (sodium hydroxide). Soda lime is a mixture of these two compounds. When sodium ethanoate (NaC2H3O2) is heated with soda lime, it undergoes a reaction known as the Kolbe's reaction, which produces methane gas (CH4) as one of the products. The reaction can be represented as follows: 2NaC2H3O2 + 2Ca(OH)2 → 2CH4 + 2NaOH + 2CaCO3 In this reaction, the sodium ethanoate reacts with the calcium hydroxide to form calcium acetate (Ca(C2H3O2)2) and sodium hydroxide. The calcium acetate then decomposes to produce methane gas and calcium carbonate (CaCO3), which is a solid precipitate. Therefore, the chemical constituents of soda lime used to prepare methane in the laboratory are calcium hydroxide (Ca(OH)2) and sodium hydroxide (NaOH).
Vraag 21 Verslag
What volume of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
[Na = 23, N = 14, O = 16]
Antwoorddetails
To calculate the volume of a solution, we need to use the formula: moles of solute = concentration x volume First, let's find the number of moles of sodium trioxonitrate (V) in 5g of the solute. The molar mass of NaNO3 is: Na = 23 N = 14 3 x O = 3 x 16 = 48 Molar mass = 23 + 14 + 48 = 85 g/mol The number of moles of NaNO3 in 5g is: moles = mass / molar mass = 5 / 85 = 0.0588 moles Now, we can use the formula above to find the volume of the solution: moles of solute = concentration x volume volume = moles of solute / concentration volume = 0.0588 moles / 0.100 M volume = 0.588 litres Therefore, the correct answer is 0.588 litres of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
Vraag 22 Verslag
Which of the following alkaline metals react more quickly spontaneously with water?
Antwoorddetails
The alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are the second most reactive metals in the periodic table, and, like the Group 1 metals, have increasing reactivity in the higher periods. Beryllium (Be) is the only alkaline earth metal that does not react with water or steam, even if metal is heated to red heat. Additionally, beryllium has a resistant outer oxide layer that lowers its reactivity at lower temperatures.
Magnesium shows insignificant reaction with water, but burns vigorously with steam or water vapor to produce white magnesium oxide and hydrogen gas:
A metal reacting with cold water will produce metal hydroxide. However, if a metal reacts with steam, like magnesium, metal oxide is produced as a result of metal hydroxides splitting upon heating.
The hydroxides of calcium, strontium and barium are only slightly water-soluble but produce sufficient hydroxide ions to make the environment basic, giving a general equation of:
| Order of reactivity | Metal | Reactions with water or steam |
|---|---|---|
| most reactive | potassium (K) | very vigorous reaction with cold water |
| ↑ | sodium (Na) | vigorous reaction with cold water |
| ↓ | calcium (Ca) | less vigorous reaction with cold water |
| least reactive | magnesium (Mg) | slow reaction with cold water, vigorous with steam |
Vraag 23 Verslag
When ammonia and hydrogen ion bond together to form ammonium ion, the bond formed is called
Antwoorddetails
When ammonia and hydrogen ion go into bonding, they form ammonium ion by combining with a dative/coordinate covalent bond.
Vraag 24 Verslag
Which of the following is the best starting material for the preparation of oxygen? Heating of trioxonitrate (v) with
Antwoorddetails
Vraag 25 Verslag
A solution X, on mixing with AgNO3 solution gives a white precipitate soluble in aqueous NH3 , a solution Y, when also added to X, also gives a white precipitate which is soluble when heated solutions X and Y respectively contain
Vraag 26 Verslag
Which important nitrogen-containing compound is produced in Haber's process?
Antwoorddetails
The important nitrogen-containing compound that is produced in Haber's process is NH3, which is also known as ammonia. Haber's process is a chemical process used to produce ammonia by reacting nitrogen gas (N2) and hydrogen gas (H2) under high pressure and temperature in the presence of an iron catalyst. The reaction between nitrogen and hydrogen produces ammonia as the main product, along with some nitrogen and hydrogen gases that do not react. NH3 is an important compound that is widely used in industry for the production of fertilizers, plastics, and other chemical products. It is also used as a cleaning agent, a refrigerant, and a fuel for engines. In addition, NH3 is an essential compound for life, as it is a key component of amino acids, which are the building blocks of proteins.
Vraag 28 Verslag
2-methylprop-1-ene is an isomer of
Antwoorddetails
2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene. An isomer is a molecule that has the same molecular formula as another molecule, but a different arrangement of atoms. In this case, 2-methylprop-1-ene has the molecular formula C4H8, and so do 3-methyl but-1-ene and 2-methyl but-1-ene. The difference between these three molecules is in the arrangement of the carbon and hydrogen atoms. 2-methylprop-1-ene has a branched structure with a double bond between the first and second carbon atoms. 3-methyl but-1-ene is also a branched molecule, but the double bond is between the second and third carbon atoms. Similarly, 2-methyl but-1-ene has a double bond between the first and second carbon atoms, but it has a different branching pattern. On the other hand, pent-2-ene has five carbon atoms, so it has a different molecular formula than 2-methylprop-1-ene. Therefore, 2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene, but not of pent-2-ene, because it has the same molecular formula and a different arrangement of atoms compared to the other two isomers.
Vraag 30 Verslag
200cm3 of 0.50mol/dm3 solution of calcium hydrogen trioxocarbonate (IV) is heated. The maximum weight of solid precipitated is
Antwoorddetails
To solve this problem, we need to use the concept of stoichiometry and the solubility product constant (Ksp) of calcium hydrogen trioxocarbonate (IV). First, we need to write the balanced equation for the reaction that occurs when the solution of calcium hydrogen trioxocarbonate (IV) is heated: Ca(HCO3)2(s) → CaCO3(s) + H2O(g) + CO2(g) From the balanced equation, we can see that 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate. Therefore, we need to determine the number of moles of calcium hydrogen trioxocarbonate (IV) in the solution: Number of moles = concentration x volume Number of moles = 0.50 mol/dm³ x 0.2 dm³ Number of moles = 0.1 mol Since 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate, the number of moles of calcium carbonate produced will also be 0.1 mol. Next, we need to use the solubility product constant (Ksp) of calcium carbonate to determine the maximum amount of solid that can be precipitated: Ksp = [Ca²⁺][CO3²⁻] Ksp = 3.3 x 10⁻⁹ (at 25°C) At the maximum amount of solid precipitated, all the calcium carbonate formed will have precipitated, and the concentration of calcium ions and carbonate ions will be equal. Therefore, we can assume that the concentration of calcium ions and carbonate ions is both x. Substituting into the Ksp expression: Ksp = x² 3.3 x 10⁻⁹ = x² x = 5.74 x 10⁻⁵ mol/dm³ The mass of calcium carbonate precipitated can now be calculated: Mass = number of moles x molar mass Mass = 0.1 mol x 100.1 g/mol Mass = 10.01 g Therefore, the maximum weight of solid precipitated is approximately 10 g. Note that this calculation assumes that all the calcium carbonate precipitated as a solid, which may not always be the case in a real-world experiment. Additionally, this calculation does not take into account any losses due to filtration or other experimental errors.
Vraag 31 Verslag
Which of the following factors will speed up the rate of evolution of carbon (iv) oxide in the reaction below?
2HCl + CaCO3 → CaCl2 + H2 O + CO2
Antwoorddetails
The following factors increase a reaction rate
- Increase in concentration of reactants
- Increase in temperature
- Addition of catalyst
- Increase in the surface area of reactant(s)
Vraag 32 Verslag
Hydrocarbons which will react with Tollen's reagent conform to the general formula
Vraag 33 Verslag
Which of the following properties increases from left to right along the period but decreases down the group in the Periodic Table?
I. Atomic Number ii. Ionization energy iii. Metallic character iv. Electron affinity
Antwoorddetails
Ionization energy and electron affinity increase across a period, and decrease down a group.
Vraag 34 Verslag
The combustion of carbon(ii)oxide in oxygen can be represented by equation.
2CO + O2 ? 2CO2
Calculate the volume of the resulting mixture at the end of the reaction if 50cm3 of carbon(ii)oxide was exploded in 100cm3 of oxygen
Antwoorddetails
Vraag 35 Verslag
Which quantum divides shells into orbitals?
Antwoorddetails
The quantum that divides shells into orbitals is the "Azimuthal" quantum number, also known as the "angular momentum" quantum number. The azimuthal quantum number determines the shape of an electron's orbital, which is a region in space where there is a high probability of finding an electron. It describes the angular momentum of an electron in an atom and the number of subshells within a given shell. Each subshell is associated with a specific shape, and can hold a certain number of electrons. The azimuthal quantum number is represented by the letter "l" and can have integer values ranging from 0 to (n-1), where "n" is the principal quantum number. Each value of "l" corresponds to a different subshell shape: - l = 0 corresponds to an "s" subshell, which is spherical in shape. - l = 1 corresponds to a "p" subshell, which has a dumbbell shape with two lobes. - l = 2 corresponds to a "d" subshell, which has a more complex shape with four lobes and a doughnut-like ring. - l = 3 corresponds to an "f" subshell, which has an even more complex shape with eight lobes. The number of orbitals within a subshell is equal to 2l+1. For example, a "p" subshell (l = 1) has three orbitals (2l+1 = 3), which are labeled as "px", "py", and "pz". In summary, the azimuthal quantum number determines the shape of the electron's orbital and the number of subshells within a given shell, and it is represented by the letter "l".
Vraag 36 Verslag
Consider the equation below:
Cr2 O2−7 + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2 O.
The oxidation number of chromium changes from
Antwoorddetails
Cr2
O2−7
+ 6Fe2+
+ 14H+
→
2Cr3+
+ 6Fe3+
+ 7H2
O
The oxidation of Cr in Cr2
O2−7
:
Let the oxidation of Cr = x;
2x + (-2 x 7) = -2 ⟹
2x - 14 = -2
2x = 12 ; x = +6
Hence, the change in oxidation of Cr = +6 to +3
Vraag 37 Verslag
The oxidation state(s) of nitrogen in ammonium nitrite is/are
Antwoorddetails
Ammonium nitrite = NH4
NO2
NH+4
: Let the oxidation number of Nitrogen = x
x + 4 = 1 ⟹
x = 1 - 4
x = -3
NO−2
: x - 4 = -1
x = -1 + 4 ⟹
x = +3.
The oxidation numbers for Nitrogen in Ammonium Nitrite = -3, +3.
Vraag 38 Verslag
A cell shorthand notation can be written as A / A+ // B2+ /B. The double slash in the notation represents the
Antwoorddetails
The double slash in the cell shorthand notation represents the salt bridge. A salt bridge is a component of an electrochemical cell that connects the two half-cells and allows the flow of ions between them. It consists of an inert electrolyte solution (usually a salt) that is placed between the two half-cells. The purpose of the salt bridge is to maintain electrical neutrality in each half-cell by allowing the flow of ions to balance the charge buildup in the half-cells. In the cell shorthand notation, the double slash "//" represents the salt bridge that connects the two half-cells of the electrochemical cell. The first half-cell is represented on the left-hand side of the slash and the second half-cell is represented on the right-hand side of the slash. The anode (where oxidation occurs) is represented on the left side, and the cathode (where reduction occurs) is represented on the right side. Therefore, the correct answer is option number 3: salt bridge.
Vraag 39 Verslag
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Antwoorddetails
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Vraag 40 Verslag
When the end alkyl groups of ethyl ethanoate are interchanged, the compound formed is
Antwoorddetails
The compound formed when the end alkyl groups of ethyl ethanoate are interchanged is ethyl propanoate. This is because ethyl ethanoate consists of two parts: the "ethyl" group and the "ethanoate" group. The ethyl group is a two-carbon chain, and the ethanoate group is a combination of a one-carbon chain and a carbonyl group (C=O) that is also attached to an oxygen atom. When the end alkyl groups are interchanged, the "ethyl" group is moved from the second carbon to the first carbon of the ethanoate group, and the "propanoate" group is formed. The "propanoate" group consists of a three-carbon chain and the carbonyl group. Therefore, the resulting compound is ethyl propanoate, which has a chemical formula of CH3CH2COOCH2CH3. This compound is commonly used as a flavoring agent and has a fruity odor reminiscent of pears.
Wilt u doorgaan met deze actie?