Laden....
Druk & Houd Vast om te Verslepen |
|||
Klik hier om te sluiten |
Vraag 1 Verslag
An aqueous solution of a metal salt, M. gives a white precipitate with NaOH which dissolves in excess NaOH. With aqueous ammonia, the solution of M also gives a white precipitate which dissolves in excess ammonia Therefore the cation in M is
Antwoorddetails
Vraag 2 Verslag
A quantity of electricity liberates 3.6g of Silver from its salt. What mass of aluminium Will be liberated from its salt by the same quantity of electricity? [Al = 27, Ag = 108].
Antwoorddetails
The amount of substance liberated at an electrode during electrolysis is directly proportional to the quantity of electricity passed through the solution. This is known as Faraday's laws of electrolysis. The key to solving this problem is to recognize that the same quantity of electricity is used to liberate both silver and aluminum from their respective salts. We can use the ratio of their molar masses to determine the mass of aluminum liberated. The molar mass of silver (Ag) is 108 g/mol, while the molar mass of aluminum (Al) is 27 g/mol. This means that it takes four times as many moles of aluminum to make the same mass as one mole of silver. Since the same quantity of electricity liberates 3.6g of silver from its salt, it will liberate four times as many moles of aluminum. Therefore, the mass of aluminum liberated is: (4 moles of Al) x (27 g/mol) = 108 g So, the mass of aluminum liberated is 0.108 g, or 0.1 g to one significant figure. Therefore, the answer is option D: 0.3g.
Vraag 3 Verslag
The refreshing and characteristic taste of soda water and other soft drinks is as a result of the presence of
Antwoorddetails
Vraag 5 Verslag
The ionic radii of metals are usually
Antwoorddetails
The ionic radii of metals are usually smaller than their atomic radii. The size of an atom is determined by the distance between the nucleus and the outermost electrons, which is known as the atomic radius. When a metal atom loses one or more electrons to form a positive ion (or cation), the resulting ion has a smaller size than the original atom. This is because the positive charge of the ion attracts the remaining electrons closer to the nucleus, making the ion smaller in size. So, when a metal forms a cation, its ionic radius is typically smaller than its atomic radius. This is a general trend in the periodic table, although there are some exceptions.
Vraag 6 Verslag
Which of the following separation techniques can be employed in obtaining solvent from its solution?
Antwoorddetails
The separation technique that can be employed in obtaining a solvent from its solution is evaporation. Evaporation is a process that involves heating a solution to vaporize the solvent, leaving behind the solute. The vaporized solvent can then be condensed and collected as a pure liquid. This technique is commonly used in industry and laboratory settings to recover solvents from solutions, as it is a simple and effective way to purify liquids. Distillation can also be used to separate a solvent from a solution, but it is a more complex process that involves boiling the solution and then condensing the vapors in a separate apparatus. Filtration and precipitation are not suitable for separating a solvent from a solution, as they are primarily used to separate solid particles from a liquid mixture.
Vraag 7 Verslag
A balanced chemical equation obeys the law of
Antwoorddetails
A balanced chemical equation obeys the law of conservation of mass. This means that in a chemical reaction, the total mass of the reactants must be equal to the total mass of the products. In other words, atoms cannot be created or destroyed during a chemical reaction, only rearranged. For example, if we burn a piece of wood, the mass of the ashes and the gases released will be equal to the mass of the original wood. This is because the atoms in the wood (carbon, hydrogen, oxygen, etc.) are rearranged during the burning process to form new molecules, but the total number of atoms remains the same. By balancing a chemical equation, we ensure that the same number and type of atoms are present on both sides of the equation, which satisfies the law of conservation of mass.
Vraag 8 Verslag
According to the Kinetic Theory an increase in temperature causes the kinetic energy of particles to
Antwoorddetails
The kinetic energy of particles increases with an increase in temperature. In the Kinetic Theory, temperature is related to the average kinetic energy of the particles in a substance. The higher the temperature, the faster the particles move, and the more energy they have. Think of it like this: if you throw a ball, it will have more energy and travel farther if you throw it harder. Similarly, if you heat up a substance, its particles will move faster and have more energy. So, the answer is that an increase in temperature causes the kinetic energy of particles to increase.
Vraag 9 Verslag
ME + nF -----> pG + qH
In the equation shown, the equilibrium constant is given by?
Antwoorddetails
The equilibrium constant for a chemical reaction is a measure of the balance between the reactants and products of a reaction at a particular temperature. The equilibrium constant is given by the ratio of the product of the concentration of the products raised to their stoichiometric coefficients, to the product of the concentration of the reactants raised to their stoichiometric coefficients. In the equation ME + nF -> pG + qH, the correct expression for the equilibrium constant is [G]^p * [H]^q / [E]^m * [F]^n, represented by.
Vraag 10 Verslag
2KClO3(g) MNO3? 2KCl(s) + 3O2(g)
The importance of the catalyst in the reaction above is that
Antwoorddetails
Vraag 11 Verslag
In the upper atmosphere, the ultra-violet light breaks off a free chlorine atom from chlorofluorocarbon molecule. The effect of this is that the free chlorine atom will
Antwoorddetails
The free chlorine atom that breaks off from a chlorofluorocarbon molecule will be very reactive and will attack ozone in the upper atmosphere. Ozone is a molecule made up of three oxygen atoms, and when the free chlorine atom reacts with ozone, it breaks the ozone molecule into two separate oxygen molecules. This reaction reduces the amount of ozone in the atmosphere, which is known as ozone depletion. Over time, this can lead to a thinning of the ozone layer, which protects life on Earth from harmful ultraviolet radiation from the sun.
Vraag 12 Verslag
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as;
Antwoorddetails
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as esterification. Esterification is the process of forming an ester, which is a type of organic compound, from an alcohol and an acid. The acid catalyst is used to speed up the reaction by providing a proton to the reaction mixture, which helps to form the ester. Esterification results in the loss of a water molecule from the reaction mixture, which makes the reaction a type of dehydration reaction. However, it is important to note that esterification is a specific type of dehydration reaction where the products are an ester and an alcohol. So, the answer is esterification.
Vraag 13 Verslag
A sample of hard water contains some calcium sulphate and calcium hydrogen carbonate. The total hardness may therefore be removed by
Antwoorddetails
Vraag 15 Verslag
In the preparation of oxygen by heating KCIO, in the presence of MnO2 only moderate heat is needed because the catalyst acts by 2
Antwoorddetails
The presence of MnO2 acts as a catalyst in the reaction of KCIO2 to produce oxygen. A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the reaction itself. MnO2 acts by lowering the energy barrier of the reaction, which means it reduces the amount of energy required for the reaction to take place. This makes it easier for the reaction to occur, and thus the reaction proceeds at a faster rate. As a result, only moderate heat is needed to provide the initial energy required for the reaction to start. Therefore, the correct answer is: lowering the energy barrier of the reaction.
Vraag 16 Verslag
The number of electrons in the valence shell of an element of atomic number 14 is?
Antwoorddetails
The number of electrons in the valence shell of an element can be determined by using the periodic table and the electron configuration of the element. The valence shell is the outermost shell that contains electrons that are involved in chemical reactions. For an element with atomic number 14, which is silicon, the electron configuration is 1s2 2s2 2p6 3s2 3p2. The valence shell of silicon is the third shell, which contains 3s2 and 3p2 electrons. Therefore, the number of electrons in the valence shell of silicon is 4 electrons.
Vraag 17 Verslag
A given amount of gas occupies 10.0dm5 at 4atm and 273°C. The number of moles of the gas present is [Molar volume of gas at s.t.p = 22.4dm3
]
Antwoorddetails
The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. We can use this equation to solve for the number of moles of gas present. First, we need to convert the volume from dm5 to dm3, which is the same as liters (L). So, 10.0 dm5 is equal to 10.0/1000 = 0.01 dm3 or 0.01 L. Next, we need to convert the temperature from Celsius to Kelvin by adding 273 to get 546 K. Now we can plug in the values we have into the ideal gas law: 4 atm x 0.01 L = n x 0.0821 L·atm/K·mol x 546 K Simplifying, we get: 0.04 = n x 44.8 Solving for n, we get: n = 0.04/44.8 = 0.00089 mol Finally, we can compare this value to the molar volume of a gas at standard temperature and pressure (STP), which is 22.4 L/mol. To do this, we need to convert the volume of gas we have to STP conditions. Since the temperature is already at STP (273 K), we just need to adjust the pressure. Using the ideal gas law, we can solve for the volume at STP: 1 atm x V = 0.00089 mol x 0.0821 L·atm/K·mol x 273 K Simplifying, we get: V = 0.0224 L or 22.4 dm3 Therefore, the amount of gas present is equal to 0.00089 mol, which is less than 1 mol. So the answer is 0.89 mol.
Vraag 18 Verslag
If the molecular mass of tetraoxosulphate (VI) acid is 98, calculate its vapour density
Antwoorddetails
Vraag 19 Verslag
What volume of oxygen will remain after reacting 8cm of hydrogen gas with 20cm of oxygen gas
Antwoorddetails
Vraag 20 Verslag
Elements P, Q, R, S have 6, 11, 15, 17 electrons respectively, therefore,
Antwoorddetails
Elements form bonds with other elements in order to attain a stable electron configuration, like the one found in noble gases. There are two types of bonds: covalent and ionic (also called electrovalent). In covalent bonds, two elements share electrons to attain a stable electron configuration. This type of bond is formed between two non-metal elements. In ionic bonds, one element donates electrons to another element, creating ions. This type of bond is formed between a metal and a non-metal element. Based on the information given, we can deduce the following: - P is a metal, as it has only 6 electrons. - Q is a non-Metal, as it has 11 electrons. - R is a metal, as it has 15 electrons. - S is a non-Metal, as it has 17 electrons. So, from this information, we can conclude that: - P will form an ionic bond with R, as P is a metal and R is a metal. - Q will form a covalent bond with S, as Q is a non-Metal and S is a non-Metal. Therefore, the correct answer is "Q will form a covalent bond with S."
Vraag 22 Verslag
When air which contains the gases Oxygen, nitrogen, carbondioxide, water vapour and the rare gases, is passed through alkaline pyrogallol and then over quicklime, the only gases left are;
Antwoorddetails
Vraag 23 Verslag
The figure above shows the electrolysis of molten sodium chloride. Z is the
Antwoorddetails
The figure shows the electrolysis of molten sodium chloride. During electrolysis, an electric current is passed through a molten or dissolved ionic compound to separate the ions. The positive ions move towards the negative electrode (cathode) and the negative ions move towards the positive electrode (anode). In the figure, the electrode connected to the positive terminal of the battery is the anode and the electrode connected to the negative terminal is the cathode. At the anode, the negatively charged chloride ions (Cl-) lose electrons and are oxidized to form chlorine gas (Cl2). At the cathode, the positively charged sodium ions (Na+) gain electrons and are reduced to form liquid sodium metal (Na). Therefore, the answer is (a) anode where the Cl- ions are oxidized. Z is the anode in the figure.
Vraag 24 Verslag
Calculate the percentage composition of oxygen in calcium trioxocarbonate(IV) [Ca=40, C=12, O=16]
Antwoorddetails
To calculate the percentage composition of oxygen in calcium trioxocarbonate(IV), we first need to determine the molar mass of the compound. The compound has one calcium atom (Ca), one carbon atom (C), and three oxygen atoms (O). So, the molar mass of calcium trioxocarbonate(IV) can be calculated as follows: Molar mass = (1 × atomic mass of Ca) + (1 × atomic mass of C) + (3 × atomic mass of O) = (1 × 40) + (1 × 12) + (3 × 16) = 40 + 12 + 48 = 100 g/mol Next, we need to determine the mass of oxygen in one mole of calcium trioxocarbonate(IV). The compound has three oxygen atoms, each with an atomic mass of 16 g/mol. Therefore, the total mass of oxygen in one mole of the compound is: Mass of oxygen = 3 × 16 = 48 g/mol Finally, to determine the percentage composition of oxygen in calcium trioxocarbonate(IV), we divide the mass of oxygen by the molar mass of the compound and multiply by 100. Percentage of oxygen = (Mass of oxygen / Molar mass of compound) × 100 = (48 / 100) × 100 = 48% Therefore, the correct answer is 48, which represents the percentage composition of oxygen in calcium trioxocarbonate(IV).
Vraag 25 Verslag
The alkanoic acid found in human sweat is
Antwoorddetails
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Vraag 26 Verslag
Which of the compounds is composed of Al, Si, O and H?
Antwoorddetails
The compound composed of Al, Si, O and H is clay. Clay is a type of sedimentary rock that is made up of very small mineral particles, including hydrated aluminum silicates and other minerals such as quartz and feldspar. These minerals are rich in aluminum, silicon, oxygen, and hydrogen, which gives clay its unique chemical composition. Clay is formed through a process of weathering and erosion of rocks containing these minerals over a long period of time. As water and other natural forces break down the rocks, the mineral particles become suspended in water and are eventually deposited in sedimentary layers. Over time, these layers become compacted and cemented together, forming the solid clay deposits we see today. Therefore, the answer is option C: Clay.
Vraag 27 Verslag
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment
Antwoorddetails
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment, the litmus will turn red and oxygen gas will be evolved. This is because during electrolysis, the positively charged copper ions (Cu2+) in the copper II sulphate solution are attracted to the negative cathode electrode, where they gain electrons and are reduced to form solid copper. At the same time, the negatively charged sulphate ions (SO42-) are attracted to the positive anode electrode, where they lose electrons and are oxidized to form oxygen gas and water. The litmus added to the anode compartment turns red because of the formation of oxygen gas, which is a highly reactive oxidizing agent that can react with the litmus to cause it to turn red. No hydrogen gas is evolved because hydrogen is produced at the cathode, which is in a separate compartment from the anode where the litmus is added.
Vraag 28 Verslag
The hydrogen ion concentration of a sample of orange juice is 2.0 X 10−11 moldm−3 . What is its pOH ? [log102 = 0.3010]
Antwoorddetails
Vraag 29 Verslag
What is the concentration of a solution containing 2g of NaOH in 100cm3 of solution? [Na = 23, O =16, H = 1]
Antwoorddetails
The concentration of a solution containing 2g of NaOH in 100cm3 of solution is 0.40 moldm-3. This can be calculated by using the formula: molarity (M) = number of moles of solute / volume of solution (in liters) First, we need to calculate the number of moles of NaOH in the solution. The molar mass of NaOH is (23 + 16 + 1) = 40 g/mol. So, 2g of NaOH is equal to 2/40 = 0.05 moles. Next, we need to convert the volume of the solution from cm3 to liters. 1 cm3 = 0.001 liters, so 100 cm3 = 0.1 liters. Finally, we can calculate the molarity as follows: M = 0.05 moles / 0.1 liters = 0.5 mol/L = 0.50 moldm-3 So, the concentration of the solution is 0.50 moldm-3.
Vraag 30 Verslag
The periodic classification is an arrangement of the elements
Antwoorddetails
The periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that lists all the known chemical elements in order of increasing atomic number, arranged in rows and columns according to their electronic structure and chemical properties. The atomic number of an element is the number of protons in the nucleus of an atom of that element. Each element has a unique atomic number, which determines its position in the periodic table. The elements are arranged in rows called periods, and in columns called groups or families. Elements in the same group have similar properties because they have the same number of valence electrons, which are the electrons in the outermost shell of the atom. The periodic table is an incredibly useful tool for chemists because it allows them to predict the properties of elements based on their position in the table. For example, elements in the same group tend to form similar compounds, so if you know the properties of one element in a group, you can often predict the properties of the other elements in that group. In summary, the periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that organizes the elements into rows and columns based on their electronic structure and chemical properties, allowing scientists to make predictions about the behavior of the elements based on their position in the table.
Vraag 31 Verslag
The boiling of fat and aqueous caustic soda is referred to as
Antwoorddetails
The boiling of fat and aqueous caustic soda is referred to as saponification. Saponification is the process of converting fat into soap through a reaction with an alkaline substance, such as caustic soda. The reaction results in the formation of soap (a salt of a fatty acid) and glycerol. This process is important in the manufacture of soap, as it allows the fat to be converted into a useful cleaning product.
Vraag 32 Verslag
To what temperature must a gas at 273k be heated in order to double both its volume and pressure?
Antwoorddetails
Vraag 33 Verslag
What mass of Cu would be produced by the cathodic reduction of Cu2+ when 1.60A of current passes through a solution of CuSO4 for 1 hour. (F=96500Cmol−1 , Cu=64)
Antwoorddetails
The reduction reaction that occurs at the cathode during the electrolysis of CuSO4" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-1-Frame">4, is: Cu2+" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-2-Frame">2+ + 2e- -> Cu(s) From this, we can see that each Cu2+ ion requires two electrons to be reduced to copper metal. Given the current (I = 1.60 A), time (t = 1 hour = 3600 s), and Faraday's constant (F = 96500 C/mol), we can calculate the total amount of charge that passes through the solution: Q = I*t = 1.60 A * 3600 s = 5760 C Using Faraday's law, we can relate the amount of charge that passes through the solution to the number of moles of electrons transferred during the reduction reaction: n = Q/F = 5760 C / 96500 C/mol = 0.0597 mol e- Since each Cu2+ ion requires 2 electrons to be reduced to copper metal, the number of moles of copper produced is half the number of moles of electrons transferred: mol Cu = 0.0597 mol e- / 2 = 0.0299 mol Cu Finally, we can convert the moles of copper produced to grams using the molar mass of copper: mass Cu = 0.0299 mol Cu * 64 g/mol = 1.91 g Therefore, the answer is 1.91 g of Cu produced. is correct.
Vraag 34 Verslag
Which of the following statements is correct about the periodic table?
Antwoorddetails
Vraag 35 Verslag
When large hydrocarbon molecules are heated at high temperature in the presence of a catalyst to give smaller molecules, the process is known as
Antwoorddetails
The process of breaking down large hydrocarbon molecules into smaller molecules by heating them at high temperatures in the presence of a catalyst is known as cracking. This process is used to convert heavy, high-molecular-weight hydrocarbon molecules into lighter, more valuable products such as gasoline and diesel fuel. The high temperatures cause the large molecules to break apart into smaller ones, and the catalyst helps speed up the reaction. This process is important in the petrochemical industry, as it allows for the production of a wider range of useful products from crude oil.
Vraag 37 Verslag
The choice of method for extracting a metal from its ores depends on the
Antwoorddetails
The choice of method for extracting a metal from its ores depends on the position of the metal in the electrochemical series. The electrochemical series is a list of metals arranged in order of their ability to gain or lose electrons. The metals at the top of the series (such as sodium and potassium) are very reactive and will readily lose electrons, while those at the bottom (such as gold and platinum) are less reactive and less likely to lose electrons. The position of a metal in the electrochemical series determines the method of extraction that should be used. For example, metals at the top of the series are usually extracted by electrolysis, which involves passing an electric current through a molten compound of the metal. This process is necessary because the metals at the top of the series are very reactive and are strongly bonded to other elements in their ores. On the other hand, metals at the bottom of the series are usually extracted by reduction with carbon or hydrogen. This is because these metals are less reactive and can be separated from their ores by reacting them with a reducing agent that can take away the oxygen and other impurities. Therefore, the position of the metal in the electrochemical series is a crucial factor in determining the method of extraction that should be used to extract it from its ores.
Vraag 38 Verslag
The salt that reacts with dilute hydrochloric acid to produce a pungent smelling gas which decolourizes acidified purple potassium tetraoxomanganate (VII) solution is
Antwoorddetails
Vraag 39 Verslag
The type of bonding in [Cu(NH3 )4 ]2+ is
Antwoorddetails
The type of bonding in [Cu(NH3)4]2+ is coordinate bonding. Coordinate bonding (also known as dative covalent bonding) is a type of covalent bonding where one atom (in this case, the nitrogen atom in NH3) donates a pair of electrons to another atom or ion (in this case, the copper ion Cu2+). The donating atom is called the ligand, and the receiving atom or ion is called the central metal ion. In [Cu(NH3)4]2+, each ammonia molecule (NH3) donates a lone pair of electrons on the nitrogen atom to the copper ion, forming four coordinate bonds between the ligands and the central copper ion. The presence of coordinate bonds is indicated by the use of square brackets around the coordination compound, and the charge on the compound is indicated by the superscript outside the brackets. Therefore, the answer is option A: coordinate.
Vraag 40 Verslag
Which of these sources of water may likely contain the least concentration of Ca2+ and Mg2+ ?
Antwoorddetails
The source of water that is likely to contain the least concentration of Ca2+ and Mg2+ is tap water. Tap water is treated and processed before it is made available for consumption, which often involves removing minerals such as calcium and magnesium. Spring water and river water, on the other hand, are naturally occurring and generally contain higher levels of minerals. Sea water has the highest concentration of minerals, including Ca2+ and Mg2+.
Wilt u doorgaan met deze actie?