Laden....
|
Druk & Houd Vast om te Verslepen |
|||
|
Klik hier om te sluiten |
|||
Vraag 1 Verslag
The presence of ammonia gas in a desiccator can exclusively be removed by
Antwoorddetails
Vraag 2 Verslag
How many atoms are present in 6.0g of magnesium? [Mg = 24, N.A = 6.02 x 10 23 mol]
Antwoorddetails
Vraag 3 Verslag
What volume of oxygen will remain after reacting 8cm of hydrogen gas with 20cm of oxygen gas
Antwoorddetails
Vraag 4 Verslag
The end products of burning a candle in the atmosphere are water and
Antwoorddetails
Vraag 5 Verslag
A sample of hard water contains some calcium sulphate and calcium hydrogen carbonate. The total hardness may therefore be removed by
Antwoorddetails
Vraag 7 Verslag
A correct electrochemical series can be obtained from Na, Ca, Al, Mg, Zn, Fe, Pb, H, Cu, Hg, Ag, Au by interchanging
Antwoorddetails
Vraag 8 Verslag
If 1 litre of 2.2M sulphuric acid is poured into a bucket containing 10 litres of water and the resulting solution mixed thoroughly, the resulting sulphuric acid concentration will be
Antwoorddetails
When 1 liter of 2.2M sulphuric acid is added to 10 liters of water, the total volume of the resulting solution is 11 liters. To find the resulting concentration of sulphuric acid, we need to use the equation: M1V1 = M2V2 where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume. We can plug in the values we know: M1 = 2.2M (the initial concentration of the sulphuric acid) V1 = 1L (the initial volume of the sulphuric acid) M2 = ? (the final concentration we're trying to find) V2 = 11L (the final volume of the resulting solution) Solving for M2, we get: M2 = (M1 x V1) / V2 M2 = (2.2M x 1L) / 11L M2 = 0.2M Therefore, the resulting sulphuric acid concentration is 0.2M or 0.2 moles per liter. In summary, when 1 liter of 2.2M sulphuric acid is mixed with 10 liters of water, the resulting sulphuric acid concentration is diluted to 0.2M. This is because the total volume of the resulting solution is greater than the initial volume of the sulphuric acid, which leads to a decrease in concentration.
Vraag 9 Verslag
Which of the following produces relatively few ions in solution?
Antwoorddetails
The correct answer is AI(OH)3. When ionic compounds dissolve in water, they dissociate into their constituent ions, producing charged particles in solution. The more ions a compound produces, the more conductive it is in solution. AI(OH)3, also known as aluminum hydroxide, produces relatively few ions in solution because it is a weak base. When AI(OH)3 dissolves in water, it releases a small amount of Al3+ and OH- ions. In contrast, NaOH, KOH, and Ca(OH)2 are strong bases that dissociate more completely in water and produce more ions in solution. NaOH and KOH produce one hydroxide ion for every sodium or potassium ion, while Ca(OH)2 produces two hydroxide ions for every calcium ion. Therefore, of the options listed, AI(OH)3 produces relatively few ions in solution.
Vraag 10 Verslag
On which of the following is the solubility of a gaseous substance dependent?
I. Nature of solvent
II. Nature of solute
III. Temperature
IV. Pressure
Antwoorddetails
Vraag 11 Verslag
The figure above shows the electrolysis of molten sodium chloride. Z is the
Antwoorddetails
The figure shows the electrolysis of molten sodium chloride. During electrolysis, an electric current is passed through a molten or dissolved ionic compound to separate the ions. The positive ions move towards the negative electrode (cathode) and the negative ions move towards the positive electrode (anode). In the figure, the electrode connected to the positive terminal of the battery is the anode and the electrode connected to the negative terminal is the cathode. At the anode, the negatively charged chloride ions (Cl-) lose electrons and are oxidized to form chlorine gas (Cl2). At the cathode, the positively charged sodium ions (Na+) gain electrons and are reduced to form liquid sodium metal (Na). Therefore, the answer is (a) anode where the Cl- ions are oxidized. Z is the anode in the figure.
Vraag 12 Verslag
The alkanoic acid found in human sweat is
Antwoorddetails
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Vraag 13 Verslag
In the preparation of oxygen by heating KCIO, in the presence of MnO2 only moderate heat is needed because the catalyst acts by 2
Antwoorddetails
The presence of MnO2 acts as a catalyst in the reaction of KCIO2 to produce oxygen. A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the reaction itself. MnO2 acts by lowering the energy barrier of the reaction, which means it reduces the amount of energy required for the reaction to take place. This makes it easier for the reaction to occur, and thus the reaction proceeds at a faster rate. As a result, only moderate heat is needed to provide the initial energy required for the reaction to start. Therefore, the correct answer is: lowering the energy barrier of the reaction.
Vraag 14 Verslag
When air which contains the gases Oxygen, nitrogen, carbondioxide, water vapour and the rare gases, is passed through alkaline pyrogallol and then over quicklime, the only gases left are;
Antwoorddetails
Vraag 15 Verslag
Elements P, Q, R, S have 6, 11, 15, 17 electrons respectively, therefore,
Antwoorddetails
Elements form bonds with other elements in order to attain a stable electron configuration, like the one found in noble gases. There are two types of bonds: covalent and ionic (also called electrovalent). In covalent bonds, two elements share electrons to attain a stable electron configuration. This type of bond is formed between two non-metal elements. In ionic bonds, one element donates electrons to another element, creating ions. This type of bond is formed between a metal and a non-metal element. Based on the information given, we can deduce the following: - P is a metal, as it has only 6 electrons. - Q is a non-Metal, as it has 11 electrons. - R is a metal, as it has 15 electrons. - S is a non-Metal, as it has 17 electrons. So, from this information, we can conclude that: - P will form an ionic bond with R, as P is a metal and R is a metal. - Q will form a covalent bond with S, as Q is a non-Metal and S is a non-Metal. Therefore, the correct answer is "Q will form a covalent bond with S."
Vraag 16 Verslag
The number of electrons in the valence shell of an element of atomic number 14 is?
Antwoorddetails
The number of electrons in the valence shell of an element can be determined by using the periodic table and the electron configuration of the element. The valence shell is the outermost shell that contains electrons that are involved in chemical reactions. For an element with atomic number 14, which is silicon, the electron configuration is 1s2 2s2 2p6 3s2 3p2. The valence shell of silicon is the third shell, which contains 3s2 and 3p2 electrons. Therefore, the number of electrons in the valence shell of silicon is 4 electrons.
Vraag 17 Verslag
The solubility of the solids that dissolves in a given solvent with the liberation of heat will
Antwoorddetails
The solubility of solids in a given solvent is the amount of solid that can dissolve in the solvent to form a solution. When a solid dissolves in a solvent, it releases heat. The solubility of the solid in the solvent can be affected by changes in temperature. Generally, when the temperature of a solution increases, the solubility of the solid in the solvent increases as well. This is because the increased heat energy makes it easier for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will increase with an increase in temperature. On the other hand, if the temperature decreases, the solubility of the solid in the solvent decreases. This is because the decreased heat energy makes it harder for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will decrease with a decrease in temperature. In summary, the solubility of solids in a given solvent will generally increase with an increase in temperature and decrease with a decrease in temperature.
Vraag 18 Verslag
Calculate the percentage composition of oxygen in calcium trioxocarbonate(IV) [Ca=40, C=12, O=16]
Antwoorddetails
To calculate the percentage composition of oxygen in calcium trioxocarbonate(IV), we first need to determine the molar mass of the compound. The compound has one calcium atom (Ca), one carbon atom (C), and three oxygen atoms (O). So, the molar mass of calcium trioxocarbonate(IV) can be calculated as follows: Molar mass = (1 × atomic mass of Ca) + (1 × atomic mass of C) + (3 × atomic mass of O) = (1 × 40) + (1 × 12) + (3 × 16) = 40 + 12 + 48 = 100 g/mol Next, we need to determine the mass of oxygen in one mole of calcium trioxocarbonate(IV). The compound has three oxygen atoms, each with an atomic mass of 16 g/mol. Therefore, the total mass of oxygen in one mole of the compound is: Mass of oxygen = 3 × 16 = 48 g/mol Finally, to determine the percentage composition of oxygen in calcium trioxocarbonate(IV), we divide the mass of oxygen by the molar mass of the compound and multiply by 100. Percentage of oxygen = (Mass of oxygen / Molar mass of compound) × 100 = (48 / 100) × 100 = 48% Therefore, the correct answer is 48, which represents the percentage composition of oxygen in calcium trioxocarbonate(IV).
Vraag 19 Verslag
A substance that is used as a ripening agent for fruits is
Antwoorddetails
The substance that is commonly used as a ripening agent for fruits is ethene. Ethene, also known as ethylene, is a natural plant hormone that is produced by fruits, especially during the ripening process. It is a colorless gas that can be easily synthesized and used as a ripening agent for fruits. When fruits are exposed to ethene, it triggers a series of biochemical reactions that accelerate the natural ripening process. This can help fruits to ripen faster and more uniformly, which is important for commercial purposes where fruits need to be sold quickly. The use of ethene as a ripening agent is regulated by food safety agencies, as excessive exposure to ethene can cause over-ripening and spoilage of fruits. However, when used in appropriate concentrations, ethene is a safe and effective way to promote the ripening of fruits.
Vraag 21 Verslag
The salt that reacts with dilute hydrochloric acid to produce a pungent smelling gas which decolourizes acidified purple potassium tetraoxomanganate (VII) solution is
Antwoorddetails
Vraag 22 Verslag
In the reaction between sodium hydroxide and sulphuric acid solutions, what volume of 0.5 molar sodium hydroxide would exactly neutralise 10cm3 of 1.25 molar sulphuric acid?
Antwoorddetails
Vraag 23 Verslag
Which of the following are mixtures?
I. Petroleum
II. Rubber latex
III. Vulcanizer's solution
IV. Carbon sulphide
Antwoorddetails
Vraag 24 Verslag
If the molecular mass of tetraoxosulphate (VI) acid is 98, calculate its vapour density
Antwoorddetails
Vraag 25 Verslag
An element used in the production of matches is
Antwoorddetails
The element used in the production of matches is sulphur. Matches are small sticks made of wood or cardboard with a chemical mixture at one end. This chemical mixture, called the match head, contains several compounds including sulphur. When the match is struck against a rough surface, the friction generates heat that ignites the sulphur in the match head, causing a flame. This flame then ignites the other compounds in the match head, which in turn ignites the wood or cardboard stick. Sulphur is an important component of the match head because it is highly flammable and burns easily. It also helps to ignite the other compounds in the match head. However, sulphur by itself is not a good fuel, which means that it cannot sustain a flame on its own. Therefore, it needs other combustible materials, such as potassium chlorate or phosphorus, to make the match head burn. Overall, sulphur plays a crucial role in the chemistry of matches and allows us to easily start fires for various purposes.
Vraag 27 Verslag
To what temperature must a gas at 273k be heated in order to double both its volume and pressure?
Antwoorddetails
Vraag 28 Verslag
At what temperature is the solubility of potassium trioxonitrate(V ) equal to that of sodium trioxonitrate (V)?
Antwoorddetails
Vraag 29 Verslag
ME + nF -----> pG + qH
In the equation shown, the equilibrium constant is given by?
Antwoorddetails
The equilibrium constant for a chemical reaction is a measure of the balance between the reactants and products of a reaction at a particular temperature. The equilibrium constant is given by the ratio of the product of the concentration of the products raised to their stoichiometric coefficients, to the product of the concentration of the reactants raised to their stoichiometric coefficients. In the equation ME + nF -> pG + qH, the correct expression for the equilibrium constant is [G]^p * [H]^q / [E]^m * [F]^n, represented by.
Vraag 30 Verslag
Aluminium does not react with either dilute or concentrated trioxonitrate (V) acid because
Antwoorddetails
Vraag 31 Verslag
H2 S(g) + Cl2(g) → 2HCl(g) + S(g) In the reaction above, the substance that is reduced is
Antwoorddetails
Vraag 32 Verslag
The boiling of fat and aqueous caustic soda is referred to as
Antwoorddetails
The boiling of fat and aqueous caustic soda is referred to as saponification. Saponification is the process of converting fat into soap through a reaction with an alkaline substance, such as caustic soda. The reaction results in the formation of soap (a salt of a fatty acid) and glycerol. This process is important in the manufacture of soap, as it allows the fat to be converted into a useful cleaning product.
Vraag 34 Verslag
A balanced chemical equation obeys the law of
Antwoorddetails
A balanced chemical equation obeys the law of conservation of mass. This means that in a chemical reaction, the total mass of the reactants must be equal to the total mass of the products. In other words, atoms cannot be created or destroyed during a chemical reaction, only rearranged. For example, if we burn a piece of wood, the mass of the ashes and the gases released will be equal to the mass of the original wood. This is because the atoms in the wood (carbon, hydrogen, oxygen, etc.) are rearranged during the burning process to form new molecules, but the total number of atoms remains the same. By balancing a chemical equation, we ensure that the same number and type of atoms are present on both sides of the equation, which satisfies the law of conservation of mass.
Vraag 35 Verslag
The choice of method for extracting a metal from its ores depends on the
Antwoorddetails
The choice of method for extracting a metal from its ores depends on the position of the metal in the electrochemical series. The electrochemical series is a list of metals arranged in order of their ability to gain or lose electrons. The metals at the top of the series (such as sodium and potassium) are very reactive and will readily lose electrons, while those at the bottom (such as gold and platinum) are less reactive and less likely to lose electrons. The position of a metal in the electrochemical series determines the method of extraction that should be used. For example, metals at the top of the series are usually extracted by electrolysis, which involves passing an electric current through a molten compound of the metal. This process is necessary because the metals at the top of the series are very reactive and are strongly bonded to other elements in their ores. On the other hand, metals at the bottom of the series are usually extracted by reduction with carbon or hydrogen. This is because these metals are less reactive and can be separated from their ores by reacting them with a reducing agent that can take away the oxygen and other impurities. Therefore, the position of the metal in the electrochemical series is a crucial factor in determining the method of extraction that should be used to extract it from its ores.
Vraag 36 Verslag
Which of these alloys contains copper?
Antwoorddetails
Bronze is the alloy that contains copper. Bronze is a metal alloy composed of copper and typically other elements such as tin, aluminum, silicon, or nickel. It is known for its strength, durability, and corrosion resistance. In fact, bronze is one of the earliest alloys created by humans, and it has been used for thousands of years to make tools, weapons, and decorative objects. Solder is an alloy of lead, tin, and sometimes other metals that is used to join metals together by melting the solder and allowing it to flow into the joint. Steel is an alloy of iron and carbon, and sometimes other elements like chromium, nickel, or manganese, that is known for its strength and durability. Permallory is a nickel-iron alloy with high magnetic permeability and low coercive force, which makes it useful in the production of electrical and electronic equipment. None of these alloys contain copper.
Vraag 38 Verslag
The ionic radii of metals are usually
Antwoorddetails
The ionic radii of metals are usually smaller than their atomic radii. The size of an atom is determined by the distance between the nucleus and the outermost electrons, which is known as the atomic radius. When a metal atom loses one or more electrons to form a positive ion (or cation), the resulting ion has a smaller size than the original atom. This is because the positive charge of the ion attracts the remaining electrons closer to the nucleus, making the ion smaller in size. So, when a metal forms a cation, its ionic radius is typically smaller than its atomic radius. This is a general trend in the periodic table, although there are some exceptions.
Vraag 39 Verslag
In the upper atmosphere, the ultra-violet light breaks off a free chlorine atom from chlorofluorocarbon molecule. The effect of this is that the free chlorine atom will
Antwoorddetails
The free chlorine atom that breaks off from a chlorofluorocarbon molecule will be very reactive and will attack ozone in the upper atmosphere. Ozone is a molecule made up of three oxygen atoms, and when the free chlorine atom reacts with ozone, it breaks the ozone molecule into two separate oxygen molecules. This reaction reduces the amount of ozone in the atmosphere, which is known as ozone depletion. Over time, this can lead to a thinning of the ozone layer, which protects life on Earth from harmful ultraviolet radiation from the sun.
Vraag 40 Verslag
Calculate the pH of 0.05 moldm?3 H2 SO4
Antwoorddetails
To solve this problem, we need to use the formula for calculating the pH of a solution, which is: pH = -log[H+] where [H+] is the concentration of hydrogen ions in moles per liter. The given chemical equation is: H2SO4 + 2H2O → 2H3O+ + SO42- From this equation, we can see that one molecule of sulfuric acid (H2SO4) can donate two hydrogen ions (H+) to the solution, which means that the concentration of hydrogen ions is twice the concentration of sulfuric acid. Therefore, the concentration of hydrogen ions in this solution is: [H+] = 2 x 0.05 moldm^-3 = 0.1 moldm^-3 Now we can use the formula for pH: pH = -log[H+] pH = -log(0.1) pH = 1.00 Therefore, the pH of the solution is 1.00.
Wilt u doorgaan met deze actie?