Ana ebu...
|
Tẹ & Di mu lati Gbe Yika |
|||
|
Pịa Ebe a ka Imechi |
|||
Ajụjụ 1 Ripọtì
The average translational kinetic energy of gas molecules depends on
Akọwa Nkọwa
The average translational kinetic energy of gas molecules is directly related to the temperature of the gas. This relationship is based on the principles of kinetic molecular theory, which explains the behavior of gas molecules in terms of their motion.
Let's break this down simply:
1. Temperature and Kinetic Energy:
The average translational kinetic energy of gas molecules is given by the equation:
\( KE_{avg} = \frac{3}{2} k_B T \)
where \( KE_{avg} \) is the average translational kinetic energy, \( k_B \) is the Boltzmann constant, and \( T \) is the absolute temperature in Kelvin. This formula shows that the kinetic energy is directly proportional to the temperature.
2. What This Means:
As the temperature of a gas increases, the molecules move faster, which increases their translational kinetic energy. Conversely, as the temperature decreases, the molecules slow down, resulting in lower kinetic energy.
It is important to note that this relation is independent of the pressure and the number of moles of the gas. While pressure and the number of moles do affect the overall behavior of a gas, they do not directly influence the average translational kinetic energy of individual molecules.
Therefore, the correct explanation is that the average translational kinetic energy of gas molecules depends on temperature only.
Ajụjụ 2 Ripọtì
Use the diagram above to answer the question that follows
The diagram above is
Akọwa Nkọwa
The diagram in the image represents the urinary system, as indicated by the correct answer. The urinary system includes the kidneys, ureters, bladder, and urethra, which are responsible for filtering blood and excreting waste in the form of urine.
Kidneys – Filter waste and excess fluids from the blood to form urine.
Ureters – Tubes that carry urine from the kidneys to the bladder.
Urinary Bladder – Stores urine before it is expelled from the body.
Urethra – A tube that allows urine to exit the body.
This system plays a crucial role in maintaining the body's fluid balance and removing waste products.
Ajụjụ 3 Ripọtì
An object is placed 25cm in front of a convex mirror has its image formed 5cm behind the mirror. what is the focal length of the convex mirror
Akọwa Nkọwa
Object distance (u) = -25 cm (negative because the object is in front of the mirror)
Image distance (v) = +5 cm (positive because the image is behind the convex mirror)
Using 1f = 1u + 1v
1f = 1−25 + 15
f = 254 = 6.250cm.
Ajụjụ 4 Ripọtì
The thermometer whose thermometric property is change in volume with temperature is
Akọwa Nkọwa
A thermometer that relies on the **thermometric property** of **change in volume with temperature** is the **Liquid-in-glass thermometer**.
Here is why:
1. **Construction**: A liquid-in-glass thermometer consists of a **glass tube** that encloses a small reservoir filled with a **thermometric liquid**, typically mercury or colored alcohol.
2. **Principle of Operation**: As the **temperature** changes, the **volume of the liquid** inside the tube changes. When the temperature rises, the liquid **expands** and moves up the tube. Conversely, when the temperature decreases, the liquid **contracts** and moves down the tube.
3. **Scale Calibration**: The thermometer has graduations marked along the tube, allowing the user to read the temperature by observing the level of the liquid against these scale markings.
Therefore, the liquid-in-glass thermometer operates on the principle that the **volume of a liquid changes with temperature**, making it the correct answer.
Ajụjụ 5 Ripọtì
A red shirt under a red light appears pale because red
Akọwa Nkọwa
To understand why a red shirt appears pale under red light, we need to consider how colors are perceived. A shirt's color is due to the light it reflects. A red shirt reflects red light and absorbs other colors. This is why it looks red under normal white light, which is made up of many colors including red.
When you place a red shirt under red light, the only available light to reflect is red. Since the shirt is already designed to reflect red light, it reflects the red light and appears its vivid color. However, it might appear brighter or paler since no other colors are present to contrast against the red.
Therefore, the best explanation is that the red shirt absorbs other colours and reflects red.
Ajụjụ 6 Ripọtì
The simple form of the lead acid accumulator often has a negative pole of
Akọwa Nkọwa
The simple form of the lead acid accumulator often has a negative pole of lead plate. In a lead-acid battery, the key components include two electrodes and an electrolyte. The **negative pole**, also known as the cathode during discharge, is typically made of **lead (Pb)**, which is in the form of a **lead plate**. When the battery is in use or discharging, this lead reacts with sulphuric acid (the electrolyte) to create lead sulfate.
To break it down further:
Thus, by analyzing the composition and reactions within a lead-acid battery, it is clear that the **negative pole** is made from a **lead plate**.
Ajụjụ 7 Ripọtì
The fourth overtone of a closed pipes is 900Hz, its fundamental frequency is
Akọwa Nkọwa
To solve this problem, let's first understand how sound works in a closed pipe. A closed pipe has one end closed and another end open. Sound waves inside such a pipe create standing waves, where nodes (points of no movement) and antinodes (points of maximum movement) are formed.
For a closed pipe, the fundamental frequency (also called the first harmonic) has one node at the closed end and one antinode at the open end. The wavelength is four times the length of the pipe.
The overtone sequence for a closed pipe includes only odd harmonics: 1st (fundamental), 3rd, 5th, 7th, etc. The nth overtone is the 2nth + 1 harmonic. The equation for the frequency of a harmonic in a closed pipe is:
f_n = n * f_1, where f_n is the frequency of the nth harmonic and f_1 is the fundamental frequency
In this case, the fourth overtone corresponds to the 9th harmonic because 2 * 4 + 1 = 9. Therefore, we have:
900 Hz = 9 * f_1
To find the fundamental frequency (f_1), we solve for f_1:
f_1 = 900 Hz / 9
f_1 = 100 Hz
Therefore, the fundamental frequency is 100 Hz.
Ajụjụ 8 Ripọtì
The gravitational force between two objects masses 1024 kg and 1027 kg is 6.67N. Calculate the distance between them [ G = 6.6 x 10−11 Nm2 kg−2 ]
Akọwa Nkọwa
To calculate the distance between two objects based on the gravitational force acting between them, we need to use the formula for gravitational force:
F = (G * m1 * m2) / r²
Where:
We need to compute r by rearranging the formula:
r² = (G * m1 * m2) / F
Therefore, the distance r is:
r = √((G * m1 * m2) / F)
Substitute the given values into the equation:
r = √((6.6 x 10-11 Nm²/kg² * 1024 kg * 1027 kg) / 6.67 N)
Calculating inside the square root:
G * m1 * m2 = 6.6 x 10-11 * 1024 * 1027 = 6.6 x 1040 Nm²
Then divide by the force:
6.6 x 1040 Nm² / 6.67 N = 0.99 x 1040 m²
Finally, calculate the square root:
r = √(0.99 x 1040)
r ≈ 1.0 x 1020 m
Therefore, the distance between the two objects is approximately 1.0 x 1020 m.
Ajụjụ 9 Ripọtì
In electrolysis, when same quantity of electricity is passed through different electrolytes, mass of substances deposited is proportional to
Akọwa Nkọwa
In electrolysis, when the same quantity of electricity is passed through different electrolytes, the mass of substances deposited is proportional to their chemical equivalent. The reason for this lies in Faraday's laws of electrolysis. Faraday's second law states that the amounts of different substances deposited or liberated by the same quantity of electricity are proportional to their chemical equivalents.
Chemical equivalent refers to a measure of a substance's ability to react or be deposited during electrolysis, and it is calculated as the molar mass divided by valency (n). This is why it is sometimes also referred to as equivalent weight.
In essence, for a given charge (equal number of electrons or electricity), a substance with a lower chemical equivalent will deposit more mass because it requires fewer electrons to undergo the chemical change.
Ajụjụ 10 Ripọtì
The web-feet of frogs and toads is basically for
Akọwa Nkọwa
The web-feet of frogs and toads is primarily for swimming. These webbed feet act like paddles, allowing the frog or toad to move efficiently through the water. When the animal spreads its toes, the webbing provides a larger surface area, which gives better propulsion in the water. This adaptation is essential, as many species of frogs and toads spend a significant amount of their time in aquatic environments where efficient swimming helps them in searching for food, escaping predators, and traveling from one place to another. In essence, the webbed feet are a vital feature for their aquatic lifestyle.
Ajụjụ 11 Ripọtì
The total number of ATP produced during glycolysis is
Akọwa Nkọwa
During the process of glycolysis, a single glucose molecule is broken down into two molecules of pyruvate. During this metabolic pathway, there is a net gain of adenosine triphosphate (ATP) molecules. To understand how many ATP molecules are produced, let's break it down step by step.
1. **Initial ATP Investment:** Glycolysis initially requires an investment of 2 ATP molecules to phosphorylate glucose and convert it into a more reactive form during the early stages of the glycolytic pathway.
2. **ATP Production:** As glycolysis progresses, a total of 4 ATP molecules are produced. This occurs in the later steps of the pathway where adenosine diphosphate (ADP) is phosphorylated to form ATP. This is known as substrate-level phosphorylation.
3. **Net ATP Gain:** To find out the net gain of ATP through glycolysis, simply subtract the initial ATP investment from the total ATP produced:
Net ATP = Total ATP produced - Initial ATP investment
Net ATP = 4 ATP - 2 ATP
Net ATP = 2 ATP
Thus, the net total number of ATP produced during glycolysis is 2 molecules.
Ajụjụ 12 Ripọtì
A light ray passing from air into water at an angle of 30º from the normal in air would
Akọwa Nkọwa
When light passes from one medium to another, such as from air to water, it bends or refracts. This phenomenon is described by Snell's Law, which states: n₁ * sin(θ₁) = n₂ * sin(θ₂), where:
The refractive index of air is approximately 1, and the refractive index of water is approximately 1.33. Given the angle of incidence in air is 30º:
Using Snell's Law:
1 * sin(30º) = 1.33 * sin(θ₂)
You will find:
sin(θ₂) = sin(30º) / 1.33
sin(θ₂) ≈ 0.5 / 1.33
sin(θ₂) ≈ 0.375
Now, solve for θ₂ by taking the inverse sine (arcsin):
θ₂ ≈ arcsin(0.375)
θ₂ ≈ 22.09º
Thus, when a light ray passes from air into water at an angle of 30º from the normal in air, it will make an angle less than 30º from the normal in water, approximately 22.09º. This is because the light ray bends toward the normal as it enters a denser medium (water).
Ajụjụ 13 Ripọtì
Which of the following is not a part of model rocket?
Akọwa Nkọwa
When it comes to a model rocket, it is crucial to understand the different parts that make up the rocket and their functions:
Now, “Not recovery devices” is listed among the options. A recovery device is actually a part of a model rocket system. Common recovery devices include parachutes or streamers that deploy after the rocket reaches its peak altitude, allowing it to return safely to the ground. Such devices are indeed part of a model rocket design.
Therefore, the option “Not recovery devices” itself is not recognized as a part of a model rocket. Instead, the sentence is stating that they are not part of the main components, which implies it's indicative rather than being the name of a component. Hence, it does not pertain to a single component like the body tube, nose cone, or fins.
Ajụjụ 14 Ripọtì
A load of 300N is to be lifted by a machine with a velocity ratio of 2 and an efficiency of 60%. What effort will be applied to lift the load?
Akọwa Nkọwa
To determine the effort needed to lift a load using a machine, we first need to understand some key concepts: **Load**, **Effort**, **Velocity Ratio** (VR), and **Efficiency**.
1. **Load** is the force or weight that needs to be lifted by the machine. In this case, the load is 300N.
2. **Velocity Ratio (VR)** is the ratio of the distance moved by the effort to the distance moved by the load. Given here as 2.
3. **Efficiency** of a machine is expressed as a percentage and is the ratio of the useful work output to the input work done by the effort. Here, the efficiency is 60% or 0.60 as a decimal.
The formula to calculate the **Effort** is derived from the relationship between these factors:
\[ \text{Efficiency} = \frac{\text{Mechanical Advantage (MA)}}{\text{Velocity Ratio (VR)}} \]
Where:
\[ \text{Mechanical Advantage (MA)} = \frac{\text{Load}}{\text{Effort}} \]
From the above, we have:
\[ \text{MA} = \text{VR} \times \text{Efficiency} \]
Replacing with the given values:
\[ MA = 2 \times 0.60 = 1.2 \]
Now, calculate the **Effort** using the relation:
\[ \text{Effort} = \frac{\text{Load}}{\text{MA}} \]
\[ \text{Effort} = \frac{300N}{1.2} = 250N \]
Therefore, the **Effort** needed to lift the load is 250N.
Ajụjụ 15 Ripọtì
The energy of light of frequency 2.0 x 1015 Hz is (h = 6.63 x 10−34 Js)
Akọwa Nkọwa
To determine the energy of light given its frequency, we can utilize the formula:
E = h × f
Where:
E is the energy of the photon in joules (J)
h is Planck's constant, approximately 6.63 × 10-34 J·s
f is the frequency of light in hertz (Hz)
Given the frequency f = 2.0 × 1015 Hz, we can substitute the known values into our equation:
E = 6.63 × 10-34 J·s × 2.0 × 1015 Hz
To simplify the calculation, multiply the numerical parts and then add the indices of 10:
E = (6.63 × 2.0) × (10-34 × 1015)
E = 13.26 × 10-19 J
This can be approximated to 1.33 × 10-18 J. Thus, the energy of light with the given frequency is 1.33 × 10-18 J.
Ajụjụ 16 Ripọtì
The land and sea breeze is attributed to
Akọwa Nkọwa
The phenomenon of land and sea breeze is primarily attributed to convection.
To understand this, let's first look at what land and sea breezes are:
Land Breeze: At night, the land cools down faster than the sea. The cooler, denser air from the land moves towards the sea, and this is known as a land breeze.
Sea Breeze: During the day, the land heats up more quickly than the sea. The warmer, lighter air over the land rises, and the cooler air from the sea moves in to take its place. This movement of air from the sea to the land is known as a sea breeze.
Both of these processes involve the movement of air due to differences in temperature and density, which is essentially the process of convection.
Convection is the transfer of heat through a fluid (like air or water) and is responsible for moving air masses and creating these breezes. The warm air, being less dense, rises, and the cooler, denser air moves in to replace it.
In contrast, conduction is the transfer of heat through a solid material, and radiation is the transfer of heat in the form of electromagnetic waves, neither of which primarily drive the processes of these breezes, making convection the key player.
Ajụjụ 17 Ripọtì
I clear II sharp III poor IV dark
Which of the above happens when the hole of a pinhole camera is diminished?
Akọwa Nkọwa
A pinhole camera is a simple camera device that uses a tiny hole to project an inverted image of the scene in front of it onto a surface at the back of the camera. When you diminish the hole of a pinhole camera, meaning you make the hole smaller, a few effects occur on the resulting image. Here’s what happens:
Therefore, reducing the size of the pinhole in a pinhole camera results in the image becoming both darker and sharper.
Answer: II only (The image becomes sharper.)
Ajụjụ 18 Ripọtì
In a solar panel, solar beam is concentrated by using
Akọwa Nkọwa
In a solar panel system, the type of mirror used to concentrate solar beams is the Concave Mirror.
Explanation:
A concave mirror is a type of mirror that curves inward, like the inside of a bowl. This shape is very effective at focusing light. When sunlight hits a concave mirror, the mirror's shape causes the light beams to converge, or come together, at a single point known as the focus. This concentrated light can then be used to generate heat or electricity more efficiently.
Why not the others?
A convex mirror curves outward and disperses light beams rather than concentrating them.
A plane mirror has a flat surface and reflects light at the same angle it receives it, meaning it doesn't concentrate the beams.
A triangular mirror is not typically used in solar applications for concentrating light as its shape is not conducive to focusing beams effectively.
Therefore, a concave mirror is best suited for concentrating solar beams in solar panel systems.
Ajụjụ 20 Ripọtì
A mass of gas at 40mmHg is heated from 298k to 348k at constant volume. Cal the pressure exerted by the gas.
Akọwa Nkọwa
To determine the new pressure exerted by the gas when it is heated, we'll apply **Gay-Lussac's Law**. This law states that at constant volume, the pressure of a given amount of gas is directly proportional to its absolute temperature. Mathematically, it can be expressed as:
P1/T1 = P2/T2
Where:
By rearranging the formula to solve for the final pressure (P2), we get:
P2 = P1 * (T2/T1)
Now, insert the given values into the equation:
P2 = 40 mmHg * (348 K / 298 K)
Perform the calculations:
P2 = 40 mmHg * (348 / 298)
P2 = 40 mmHg * 1.1678
P2 = 46.71 mmHg
So, the new pressure exerted by the gas when it is heated from 298 K to 348 K at constant volume is 46.71 mmHg.
Ajụjụ 21 Ripọtì
The device for measuring the angle of dip is
Akọwa Nkọwa
The device used for measuring the angle of dip is the dip circle.
Let me explain this in simple terms:
The angle of dip, also known as the magnetic inclination, is the angle made by the Earth's magnetic field lines with the horizontal plane. It varies depending on where you are on the Earth's surface. In some places, magnetic field lines are nearly vertical, while in others they are more horizontal.
A dip circle is a specialized scientific instrument used to measure this angle. It usually consists of a magnetic needle that is free to rotate in the vertical plane.
When using a dip circle, you align it so that its plane is parallel to the direction of the Earth's magnetic field. Then, you read the angle at which the magnetic needle stabilizes. This is the angle of dip. The instrument's mechanism allows for accurate measurement of this angle by compensating for any external influences or inclinations.
Ajụjụ 22 Ripọtì
When a bus is accelerating, it must be
Akọwa Nkọwa
When a bus is accelerating, it is primarily changing its velocity. This is because velocity is a vector quantity, which means it includes both the speed and the direction of the object's movement. Acceleration refers to any change in this velocity. Therefore, the bus could be increasing its speed, decreasing its speed (which is also known as deceleration), or changing its direction. All these aspects involve a change in velocity.
Let's break it down further:
Changing its Speed: If the bus is speeding up or slowing down, it results in a change in the magnitude of its velocity, contributing to acceleration.
Changing its Direction: Even if the bus maintains a constant speed, if it changes direction (like taking a turn), its velocity is altered because direction is a part of velocity. This results in acceleration.
Changing its Position: While a change in position happens during acceleration, it is not the defining feature of acceleration. An object can change its position even if it is moving with constant velocity and not accelerating.
So, the key component here for acceleration is the change in velocity, which encompasses changes in speed, direction, or both.
Ajụjụ 23 Ripọtì
Rainbow is formed when sunlight undergoes
Akọwa Nkọwa
A rainbow is formed through a combination of three processes: reflection, refraction, and dispersion. Let's break down each process to understand how a rainbow forms:
1. Refraction: When sunlight enters a raindrop, it bends or changes direction. This bending of light is known as **refraction**. Different colors of sunlight bend by different amounts because they have different wavelengths.
2. Reflection: Once inside the raindrop, the light gets reflected off the inside surface of the drop. This reflection sends the light back out of the raindrop at different angles.
3. Dispersion: As the light exits the raindrop, it bends again (refraction). Because each color bends by a different amount, the sunlight is spread out into its component colors, creating a spectrum. This spreading into a spectrum is called **dispersion**.
All three processes contribute to the formation of a rainbow. The combination of **refraction, reflection, and dispersion** results in the beautiful arc of colors that we see in the sky.
Ajụjụ 24 Ripọtì
Pilots uses aneroid barometer to know the height above sea level because
Akọwa Nkọwa
Aneroid barometers are compact and lightweight, making them suitable for use in aircraft where space and weight are critical considerations. They provide a reliable measurement of altitude based on changes in atmospheric pressure.
Ajụjụ 25 Ripọtì
Calculate the quantity of heat for copper rod whose thermal capacity is 400Jk−1 for a temperature change of 60ºC to 80ºC
Akọwa Nkọwa
To calculate the quantity of heat absorbed or released by a substance, we can use the formula:
Q = C × ΔT
where:
Given:
First, calculate the change in temperature:
ΔT = Final temperature - Initial temperature = 80°C - 60°C = 20°C
Now, substitute the values into the formula to find the quantity of heat:
Q = 400 J/°C × 20°C
Calculate the answer:
Q = 8000 J
Since the options provided are in kilojoules (KJ), we need to convert joules (J) to kilojoules (1 KJ = 1000 J):
Q = 8000 J ÷ 1000 = 8 KJ
Therefore, the quantity of heat for the copper rod, given the specified conditions, is 8 KJ.
Ajụjụ 26 Ripọtì
The stress experienced by a wire of diameter
Akọwa Nkọwa
Stress is defined as the force applied per unit area. In the context of a wire being loaded by a weight, the weight acts as the force exerted, and the cross-sectional area of the wire is the area over which this force is distributed.
Force (F): This is given by the weight, which is y2 N.
Cross-sectional Area (A): For a wire with a diameter, the area can be calculated using the formula for the area of a circle: A = πr2, where r is the radius of the wire.
Given the diameter of the wire as yπ meters, the radius (r) is half of the diameter:
r = (yπ)/2
So, the area (A) is:
A = π[(yπ)/2]2
Simplifying the area:
A = π(y2π2/4)
A = y2π3/4
Stress (σ) is given by the formula:
σ = F/A
Substituting the given weight (force) and the calculated area:
σ = (y2) / (y2π3/4)
By simplifying the expression:
σ = (4y2) / (y2π3)
Cancel out y2 from numerator and denominator:
σ = 4/π2 Nm−2
Thus, the correct stress experienced by the wire is 4π Nm−2, as provided in one of the options. The explanation shows clearly how the force and area are used to derive the stress experienced by the wire.
Ajụjụ 27 Ripọtì
Bile is a greenish alkaline liquid which is stored in the
Akọwa Nkọwa
Bile is a greenish alkaline liquid that plays a crucial role in the digestive process, particularly in the digestion and absorption of fats. It is produced in the liver, but it is not stored there. Instead, the bile is transported to a small organ where it is concentrated and stored until the body needs it for digestion. This organ is the gall bladder.
The gall bladder stores the bile and releases it into the small intestine when food, especially fatty food, enters the digestive tract. This helps in breaking down the fats into smaller droplets, making it easier for enzymes to digest them.
To sum up, the gall bladder is the organ responsible for storing bile.
Ajụjụ 28 Ripọtì
The force of attraction between molecules of the same substance is
Akọwa Nkọwa
The force of attraction between molecules of the same substance is called cohesion.
To understand this simply:
Cohesion refers to the attractive forces acting between similar molecules. For example, water molecules attract each other due to hydrogen bonding, which is a strong intermolecular force.
Let's break down some important concepts:
In summary, **cohesion** is the force that keeps the molecules of the same substance, like water, attracting each other.
Ajụjụ 29 Ripọtì
The energy in a moving car is an example of
Akọwa Nkọwa
The energy in a moving car is an example of kinetic energy.
To explain simply, **energy** is the ability to do **work** or cause **change**. There are different forms of energy, and **kinetic energy** is one of them. It is defined as the energy possessed by an object due to its motion.
When a car is moving, it possesses **kinetic energy** because its components are in **motion**. This motion energy allows the car to do tasks, such as transporting people or goods from one place to another. The faster the car moves, the greater its **kinetic energy**, and thus it can make a larger impact or do more work.
In contrast, energy forms like **mechanical energy** is a combination of both kinetic and potential energy; **electrical energy** is associated with electrical charge movement, while **potential energy** is related to the position or condition of an object (like a car parked on a hill). Therefore, the specific type of energy from a moving car is **kinetic energy**.
Ajụjụ 30 Ripọtì
A thick glass tumbler cracks when boiling water is poured into it because
Akọwa Nkọwa
When boiling water is poured into a thick glass tumbler, the inner surface of the glass is suddenly exposed to a much higher temperature compared to the outer surface. Glass is a poor conductor of heat, which means it does not transfer heat quickly. As a result, the inside of the tumbler becomes hot and attempts to **expand quickly**, while the outside remains cooler and does not expand at the same rate.
**This uneven expansion** creates tension between the inner and outer layers of the glass. The inner surface tries to expand but is constrained by the cooler, rigid outer surface, which isn't expanding as much or as quickly. This stress and tension can lead to cracking.
Therefore, the correct reason a thick glass tumbler cracks when boiling water is poured into it is because **the inside expands more rapidly than the outside.**
Ajụjụ 31 Ripọtì
The capacitance of a capacitor, C, is inversely proportional to
Akọwa Nkọwa
The capacitance of a capacitor is primarily determined by three key factors: the area of the plates, the distance between the plates, and the dielectric material used between the plates.
Capacitance (C) is calculated using the formula:
\(C = \frac{\varepsilon A}{d}\)
Where:
Let's analyze the relationship:
In summary, the capacitance of a capacitor is inversely proportional to the distance between the plates. Hence, you increase capacitance by decreasing the distance between the plates.
Ajụjụ 32 Ripọtì
Use the diagram above to answer the question that follows
The organism belongs to kingdom
Akọwa Nkọwa
The diagram is that of the virus. Viruses are obligate parasites, meaning they can't produce their own energy or proteins. They enter the host cell and use the cell's machinery to make their own nucleic acids and proteins. Viruses also use the host cell's lipids and sugar chains to create their membranes and glycoproteins. This parasitic replication can severely damage the host cell, which can lead to disease or cell death. They usually enter your body through your mucous membranes. These include your eyes, nose, mouth, penis, vagina and anus.
Viruses are a unique type of organism that are not plants, animals, or bacteria. They are often classified in their own kingdom. However, for the sake of the question, since most of their attributes and metabolic activities are more of the bacteria, we'll go with option A - Monera
Ajụjụ 33 Ripọtì
At absolute zero temperature, the average velocity of the molecules
Akọwa Nkọwa
At absolute zero temperature, which is defined as 0 Kelvin or -273.15 degrees Celsius, the energy of molecular motion ceases. This means that the molecules theoretically have minimal energy, and hence, their motion stops entirely. Therefore, the average velocity of the molecules is zero. In reality, absolute zero is a theoretical limit, and it is practically unreachable, but it serves as a concept to help in understanding the behavior of molecules at extremely low temperatures. Thus, under this theoretical condition, the average motion of molecules would be nonexistent. In summary, the average velocity of the molecules at absolute zero is zero.
Ajụjụ 34 Ripọtì
If a body in linear motion changes from point P to Q, the motion is
Akọwa Nkọwa
When a body moves in a straight line from one point, such as point P, to another point, such as point Q, the motion is called Translational Motion. This kind of motion refers to an object moving along a path in which every part of the object takes the same path as a reference point. This means that if you follow any point on the body, it covers the same amount of distance in the same time frame as any other point.
Let's break down the other options:
In conclusion, since the body is moving from point P to point Q along a straight line, it exhibits Translational Motion.
Ajụjụ 35 Ripọtì
The velocity ratio of an inclined plane at 60º to the horizontal is
Akọwa Nkọwa
The concept of an inclined plane is all about simplifying the forces involved in moving or holding a load. The **velocity ratio (VR)** for an inclined plane is defined as the ratio of the distance moved by the effort to the distance moved by the load. This can also be expressed in terms of the lengths involved in the triangle made by the inclined plane.
For an inclined plane placed at an angle **θ** to the horizontal, the velocity ratio is given by the formula:
VR = 1/sin(θ)
Given that the inclined plane is at an angle of **60º**:
First, find the sine of 60º:
sin(60º) = √3/2 (approximately 0.866)
Now, substitute this value into the formula for VR:
VR = 1/sin(60º) ≈ 1/0.866 ≈ 1.155
The **velocity ratio** for an inclined plane at **60º** to the horizontal is **approximately 1.155**.
Ajụjụ 36 Ripọtì
When a charged ebonite rod is brought near a charged glass rod, there will be
Akọwa Nkọwa
When a charged ebonite rod is brought near a charged glass rod, there will be attraction. This is because charged objects obey the fundamental principle of electrostatics, which states that opposite charges attract each other while like charges repel each other.
An ebonite rod typically acquires a negative charge when rubbed with fur, as it gains electrons. In contrast, a glass rod usually acquires a positive charge when rubbed with silk, as it loses electrons. Therefore, when these two objects, one negatively charged and the other positively charged, are brought near each other, the opposite charges will attract.
Ajụjụ 37 Ripọtì
A monochromatic light is one that
Akọwa Nkọwa
A monochromatic light is one that has a single wavelength or color. This means that it consists of light waves that all have the same frequency, resulting in a uniform appearance without any variation.
Ajụjụ 38 Ripọtì
Akọwa Nkọwa
To solve this problem, we need to understand the relationship between pressure, volume, and temperature of a gas. The relevant law here is the **Combined Gas Law**, which is expressed as:
(P1 * V1) / T1 = (P2 * V2) / T2
Where:
In the given problem:
Applying the Combined Gas Law:
(P1 * V1) / 300 = (2 * P1 * V2) / 400
Simplifying this equation:
V1/300 = 2V2/400
Multiply both sides by 400 to clear the fraction:
400 * V1 / 300 = 2 * V2
Which further simplifies to:
(4/3) * V1 = 2 * V2
Dividing both sides by 2:
(2/3) * V1 = V2
This shows that the final volume, V2, is **2/3 of the initial volume, V1**. Therefore, the volume of the gas will **decrease by 1/3**.
Ajụjụ 39 Ripọtì
If the S.V.P of water vapour was 13.5mmHg at 33ºC and 7.3mmHg at 7ºC. Find the percentage relative of the air on a day when average air temperature was 33ºC and dew point was 7ºC.
Akọwa Nkọwa
To calculate the percentage relative humidity of the air, we use the relationship between the saturation vapour pressure (SVP) and the actual vapour pressure. The formula for relative humidity is:
Relative Humidity (%) = (Actual Vapour Pressure / Saturation Vapour Pressure) * 100
In this problem, the "dew point" refers to the temperature at which air becomes saturated with moisture and water begins to condense. At the dew point, the actual vapour pressure is equal to the saturation vapour pressure at that dew point temperature.
From the problem, we have:
The actual vapour pressure of the air is equal to the SVP at the dew point, which is 7.3 mmHg.
Now we calculate the percentage relative humidity using the formula:
Relative Humidity (%) = (7.3 mmHg / 13.5 mmHg) * 100
Carrying out the calculation:
Relative Humidity (%) = (7.3 / 13.5) * 100 = 0.5407 * 100 = 54.07%
Rounding to the nearest whole number, we get **54%**. Therefore, the percentage relative humidity of the air is 54%.
Ajụjụ 40 Ripọtì
Convert 60ºC to degree Fahrenheit
Akọwa Nkọwa
To convert temperatures from Celsius to Fahrenheit, we use the formula:
F = (C × 9/5) + 32
Here, F represents the temperature in Fahrenheit, and C represents the temperature in Celsius.
Let's use this formula to convert 60ºC to Fahrenheit:
F = (60 × 9/5) + 32
First, multiply 60 by 9/5:
60 × 9/5 = 108
Next, add 32 to 108:
108 + 32 = 140
Therefore, 60ºC is equal to 140ºF.
Ị ga-achọ ịga n'ihu na omume a?