Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
An effort of 40N is applied on a machine to lift a mass of 60kg. Determine the mechanical advantage of the machine [ g = 10ms2 ]
Answer Details
To determine the Mechanical Advantage (MA) of a machine, we use the formula:
MA = Load / Effort
Here, the Load is the weight of the mass being lifted, and the Effort is the force applied on the machine.
First, we need to calculate the Load. The Load is obtained by multiplying the mass of the object by the acceleration due to gravity (g = 10 m/s2).
So, the Load (weight of the mass) is:
Load = Mass × Gravity = 60 kg × 10 m/s2 = 600 N
The Effort given is 40 N.
Now, we can calculate the Mechanical Advantage:
MA = Load / Effort = 600 N / 40 N = 15
Therefore, the Mechanical Advantage of the machine is 15.
Question 2 Report
A load of 300N is to be lifted by a machine with a velocity ratio of 2 and an efficiency of 60%. What effort will be applied to lift the load?
Answer Details
To determine the effort needed to lift a load using a machine, we first need to understand some key concepts: **Load**, **Effort**, **Velocity Ratio** (VR), and **Efficiency**.
1. **Load** is the force or weight that needs to be lifted by the machine. In this case, the load is 300N.
2. **Velocity Ratio (VR)** is the ratio of the distance moved by the effort to the distance moved by the load. Given here as 2.
3. **Efficiency** of a machine is expressed as a percentage and is the ratio of the useful work output to the input work done by the effort. Here, the efficiency is 60% or 0.60 as a decimal.
The formula to calculate the **Effort** is derived from the relationship between these factors:
\[ \text{Efficiency} = \frac{\text{Mechanical Advantage (MA)}}{\text{Velocity Ratio (VR)}} \]
Where:
\[ \text{Mechanical Advantage (MA)} = \frac{\text{Load}}{\text{Effort}} \]
From the above, we have:
\[ \text{MA} = \text{VR} \times \text{Efficiency} \]
Replacing with the given values:
\[ MA = 2 \times 0.60 = 1.2 \]
Now, calculate the **Effort** using the relation:
\[ \text{Effort} = \frac{\text{Load}}{\text{MA}} \]
\[ \text{Effort} = \frac{300N}{1.2} = 250N \]
Therefore, the **Effort** needed to lift the load is 250N.
Question 3 Report
An example of a non-rechargeable cell is
Answer Details
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Question 4 Report
Which of the following operates based on magnetic effect of electric current?
Answer Details
The device that operates based on the magnetic effect of electric current is the Dynamo.
To explain further, let's look at the concept of the magnetic effect of electric current:
A Dynamo is a device that converts mechanical energy into electrical energy. It operates based on the phenomenon called electromagnetic induction, which occurs due to the magnetic effect of electric current. When a coil of wire within the dynamo rotates in the presence of a magnetic field, it induces an electric current in the coil. Thus, the operation of a dynamo relies on the interaction between electric current and magnetic fields.
To contrast with other options:
Question 5 Report
If the velocity ratio of a machine is 4, what does it mean?
Answer Details
The velocity ratio of a machine is a concept used to explain how much the machine is expected to amplify the input motion. If the velocity ratio of a machine is 4, it means that the distance moved by the effort is 4 times greater than the distance moved by the load.
To understand this concept better, consider what a machine does: it allows you to apply a small effort over a longer distance to move a heavy load over a shorter distance. In this scenario, if the velocity ratio is 4, then for every 4 meters (or units of distance) you exert effort, the load will move 1 meter (or unit of distance).
Question 6 Report
The part of the inner ear that is responsible for hearing is
Answer Details
The part of the inner ear that is responsible for hearing is the cochlea.
The inner ear is a complex structure, and each of its components serves different functions. Let me break it down further:
Thus, the cochlea is the crucial component of the inner ear responsible for converting sound vibrations into nerve signals, making it central to the process of hearing.
Question 7 Report
The friction due to air mass can be reduced by
Answer Details
Friction due to air mass, also known as air resistance or drag, can be reduced by a concept called **streamlining**.
**Streamlining** refers to the shaping of an object in such a way that it allows air to flow smoothly around it, minimizing turbulence and reducing drag. When air flows smoothly over an object without much disturbance, there is less resistance, and the object can move more easily through the air.
Think of it like how a bullet or a fast-moving car is designed. They have a sleek, smooth shape that cuts through the air with minimal effort. This principle is applied in designing cars, airplanes, and even boats to enhance their efficiency and speed by reducing the friction with the air or water they move through.
Question 8 Report
A blacksmith heated a metal whose cubic expansivity is 3.9 x 10−6 K−1 . Calculate the area expansivity.
Answer Details
To find the area expansivity of a metal when given its cubic expansivity, you should understand the relationship between linear, area, and cubic expansivity.
Cubic expansivity (\( \beta \)) is defined as the fractional change in volume per change in temperature, and is given by the formula:
\[ \Delta V = \beta V \Delta T \]
Area expansivity (\( \alpha_{A} \)) corresponds to the fractional change in area per change in temperature and can be derived from the linear expansivity (\( \alpha \)). The relationship between these expansivities is as follows:
\[ \text{Area Expansivity (\( \alpha_{A} \))} = 2 \times \text{Linear Expansivity (\( \alpha \))} \]
The cubic expansivity (\( \beta \)) is related to the linear expansivity by:
\[ \text{Cubic Expansivity (\( \beta \))} = 3 \times \text{Linear Expansivity (\( \alpha \))} \]
Thus, based on these relationships, we can express the area expansivity in terms of the cubic expansivity:
\(\text{Area Expansivity (\( \alpha_{A} \))} = \frac{2}{3} \times \text{Cubic Expansivity (\( \beta \))}
Given that the cubic expansivity \( \beta \) is \( 3.9 \times 10^{-6} \, \text{K}^{-1} \):
The area expansivity can be calculated as follows:
\[ \text{Area Expansivity (\( \alpha_{A} \))} = \frac{2}{3} \times 3.9 \times 10^{-6} \, \text{K}^{-1} = 2.6 \times 10^{-6} \, \text{K}^{-1} \]
Therefore, the **correct answer** is **2.6 x 10^{-6} K^{-1}**.
Question 9 Report
A thick glass tumbler cracks when boiling water is poured into it because
Answer Details
When boiling water is poured into a thick glass tumbler, the inner surface of the glass is suddenly exposed to a much higher temperature compared to the outer surface. Glass is a poor conductor of heat, which means it does not transfer heat quickly. As a result, the inside of the tumbler becomes hot and attempts to **expand quickly**, while the outside remains cooler and does not expand at the same rate.
**This uneven expansion** creates tension between the inner and outer layers of the glass. The inner surface tries to expand but is constrained by the cooler, rigid outer surface, which isn't expanding as much or as quickly. This stress and tension can lead to cracking.
Therefore, the correct reason a thick glass tumbler cracks when boiling water is poured into it is because **the inside expands more rapidly than the outside.**
Question 10 Report
If the displacement of a car is proportional to the square of time, then the car is moving with
Answer Details
When we say that the displacement of a car is proportional to the square of time (d ∝ t²), it indicates a relationship between displacement (d) and time (t). This relationship is characteristic of motion where there is constant acceleration. Essentially, it means that the car is not moving at a constant speed (velocity) but is accelerating at a constant rate.
The mathematical representation of this scenario can be expressed using the formula for displacement under uniform acceleration:
d = ut + (1/2)at².
In this equation:
When the displacement is directly proportional to the square of time (d ∝ t²), it implies that the second term of the equation, which contains the (1/2)at² part, dominates the relationship. Thus, the initial velocity (u) is typically zero or negligible, making the entire displacement dependent on how time squared interacts with acceleration.
Therefore, the car is moving with uniform acceleration.
Question 11 Report
Answer Details
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Question 12 Report
The efficiency of a cell with internal resistance of 2Ω supply current to a 6Ω resistor is
Answer Details
To determine the efficiency of a cell with an internal resistance of 2 Ω while supplying current to a 6 Ω resistor, we can use the concept of power dissipation. Efficiency in this context is the ratio of the power delivered to the external resistor to the total power supplied by the cell. It can be calculated using the formula:
Efficiency (%) = (Power across load resistor / Total power output by cell) × 100
Let's break it down step by step:
The efficiency of the cell when supplying current to a 6 Ω resistor with an internal resistance of 2 Ω is 75%.
Question 13 Report
The device for measuring the angle of dip is
Answer Details
The device used for measuring the angle of dip is the dip circle.
Let me explain this in simple terms:
The angle of dip, also known as the magnetic inclination, is the angle made by the Earth's magnetic field lines with the horizontal plane. It varies depending on where you are on the Earth's surface. In some places, magnetic field lines are nearly vertical, while in others they are more horizontal.
A dip circle is a specialized scientific instrument used to measure this angle. It usually consists of a magnetic needle that is free to rotate in the vertical plane.
When using a dip circle, you align it so that its plane is parallel to the direction of the Earth's magnetic field. Then, you read the angle at which the magnetic needle stabilizes. This is the angle of dip. The instrument's mechanism allows for accurate measurement of this angle by compensating for any external influences or inclinations.
Question 14 Report
What is the colour of red rose under a blue light?
Answer Details
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Question 15 Report
Convert 60ºC to degree Fahrenheit
Answer Details
To convert temperatures from Celsius to Fahrenheit, we use the formula:
F = (C × 9/5) + 32
Here, F represents the temperature in Fahrenheit, and C represents the temperature in Celsius.
Let's use this formula to convert 60ºC to Fahrenheit:
F = (60 × 9/5) + 32
First, multiply 60 by 9/5:
60 × 9/5 = 108
Next, add 32 to 108:
108 + 32 = 140
Therefore, 60ºC is equal to 140ºF.
Question 16 Report
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Answer Details
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Question 17 Report
The changes of living organisms over generation is referred to as
Answer Details
The changes of living organisms over generations are referred to as organic evolution.
Organic evolution, also known as biological evolution, is the process through which species of organisms undergo changes over time due to genetic variations and environmental factors. This leads to the development of new traits and, over long periods, may result in the emergence of new species.
Here's a simple breakdown of the concept:
This process is a key concept in biology and is fundamental to understanding the diversity of life on Earth. Organic evolution is distinct from other kinds of evolution mentioned, as it specifically deals with biological organisms.
Question 18 Report
If a body in linear motion changes from point P to Q, the motion is
Answer Details
When a body moves in a straight line from one point, such as point P, to another point, such as point Q, the motion is called Translational Motion. This kind of motion refers to an object moving along a path in which every part of the object takes the same path as a reference point. This means that if you follow any point on the body, it covers the same amount of distance in the same time frame as any other point.
Let's break down the other options:
In conclusion, since the body is moving from point P to point Q along a straight line, it exhibits Translational Motion.
Question 19 Report
Which of the following materials has a very large energy gap band?
Answer Details
An insulator is a material that has a very large energy gap between its valence band and conduction band. To understand this, let's first consider the concept of energy bands: In materials, electrons exist in different energy levels. These levels form bands called the valence band and the conduction band. A material is classified based on the size of the energy gap between these bands.
Thus, insulators have a very large energy gap band, making them poor conductors of electricity.
Question 20 Report
The gravitational force between two objects is 10N, what is the new value of the force if the distance between them is halved?
Answer Details
The gravitational force between two objects is determined by Newton's Law of Universal Gravitation, which can be expressed by the formula:
F = G * (m1 * m2) / r²
where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between the centers of the two objects.
In this problem, it is given that the initial gravitational force is 10N. According to the formula, the gravitational force is inversely proportional to the square of the distance between the two objects.
So, if the distance between the objects is halved (i.e., r becomes r/2), then the new gravitational force F' can be calculated based on the relationship:
F' = G * (m1 * m2) / (r/2)² = G * (m1 * m2) / (r²/4) = 4 * (G * m1 * m2 / r²) = 4 * F
Since the initial force F was 10N, the new force F' when the distance is halved is:
F' = 4 * 10 = 40N
Thus, the new value of the gravitational force is 40N.
Question 21 Report
Find the value of a capacitor with voltage 5V and 30C.
Answer Details
To find the value of the capacitance, we need to use the formula for capacitance:
Capacitance (C) = Charge (Q) / Voltage (V)
In this problem, the charge (Q) is given as 30 Coulombs (C) and the voltage (V) is 5 Volts (V). We can plug these values into the formula:
C = 30 C / 5 V
Calculating the above expression gives:
C = 6 Farads (F)
Therefore, the value of the capacitor is 6 Farads.
Question 22 Report
When a cell of e.m.f 3.06V is connected, the balance of a potentiometer is 75cm, Calculate the new balance of a cell of e.m.f 2.295V
Answer Details
To solve this problem, we first need to understand the principle behind a potentiometer. A potentiometer is a device used to measure the electromotive force (e.m.f) of a cell by comparing it with a known voltage. The balance length on a potentiometer corresponds to a proportional measurement of the e.m.f.
Let's denote:
- \( V_1 \): the e.m.f of the first cell = 3.06V
- \( l_1 \): the balance length for the first cell = 75 cm
- \( V_2 \): the e.m.f of the second cell = 2.295V
- \( l_2 \): the balance length for the second cell (which we need to find)
The basic relationship for a potentiometer is given by:
\( V_1 / V_2 = l_1 / l_2 \)
Substituting the given values:
\( 3.06 / 2.295 = 75 / l_2 \)
We need to solve for \( l_2 \):
\( l_2 = (2.295 \times 75) / 3.06 \)
Now, calculating the above expression:
\( l_2 = 171.975 / 3.06 \approx 56.26 \) cm
Therefore, the new balance length for the cell with an e.m.f of 2.295V is approximately 56.26 cm.
Question 23 Report
The unit of impedance is
Answer Details
The unit of impedance is Ohm, which is symbolized by the Greek letter Ω (Omega). In electrical circuits, impedance (Z) is a measure of opposition that a circuit offers to the passage of electric current when a voltage is applied. It is similar to resistance but extends to alternating currents (AC) and contains the effects of resistance as well as reactance (which accounts for capacitors and inductors).
Just like resistance, the unit of impedance is the ohm because they measure similar concepts; however, impedance also accounts for phase shifts between voltage and current, which are not considered in simple resistance. Ohm's Law is used in AC circuits as Z = V/I, where Z is impedance, V is voltage, and I is current. This relationship shows why the unit of impedance is the same as that of resistance.
Question 24 Report
What is the least possible error encountered when taking measurement with a metre rule?
Answer Details
A standard meter rule has markings that are usually every millimeter (1 mm). The least count, which is the smallest measurement that can be accurately read, is often 1 mm.
The least possible error is generally considered to be half of the smallest division, so it is ±0.05cm (or ±0.5mm).
Question 25 Report
Use the diagram above to answer the question that follows
The diagram above is
Answer Details
The diagram in the image represents the urinary system, as indicated by the correct answer. The urinary system includes the kidneys, ureters, bladder, and urethra, which are responsible for filtering blood and excreting waste in the form of urine.
Kidneys – Filter waste and excess fluids from the blood to form urine.
Ureters – Tubes that carry urine from the kidneys to the bladder.
Urinary Bladder – Stores urine before it is expelled from the body.
Urethra – A tube that allows urine to exit the body.
This system plays a crucial role in maintaining the body's fluid balance and removing waste products.
Question 26 Report
The process of adding impurities to a semiconductor material to increase its conductivity is
Answer Details
The process you are referring to is called doping. In simple terms, doping is the method of intentionally introducing impurities into an extremely pure semiconductor to change its electrical properties, which increases its conductivity.
Semiconductors, like silicon or germanium, are materials that have electrical conductivity between conductors (like metals) and insulators (like glass). By adding impurities, we can control and enhance their ability to conduct electricity. These impurities are atoms of other elements that either have more or fewer electrons in their outer energy levels compared to those in the semiconductor.
When you add impurities with more electrons, it creates an n-type semiconductor because of the extra *negative* charge carriers (electrons). Conversely, adding impurities with fewer electrons makes a p-type semiconductor, as it creates 'holes' which act as positive charge carriers.
This process of doping is essential for creating various semiconductor devices, like diodes, transistors, and integrated circuits, which are foundational components in all electronic devices. Hence, doping plays a crucial role in the functionality and efficiency of electronic systems.
Question 27 Report
If a charge ion goes through a combined electric field E and magnetic field B, the resultant emergent velocity of the ion is
Answer Details
The resultant emergent velocity of a charged ion moving through combined electric and magnetic fields can be derived from the condition where the electric force equals the magnetic force. This gives us the formula for the velocity v:
q E = qvB
v = EB (q will cancel out)
NOTE: When both fields are present, for the ion to move without deflection, the electric force must equal the magnetic force.
Question 28 Report
Calculate the magnetic force on an electron in a magnetic field of flux density 10T, with a velocity of 3 x 107 m/s at 60º to the magnetic field (e = 1.6 x 10−19 C)
Answer Details
The magnetic force on an electron in a magnetic field (F) = q v Bsinθ
B = 10T, q = 3 x 107 m/, θ = 60º and q = 1.6 x 10−19 C
F = 1.6 x 10−19 x 3 x 107 x 10 x sin 60º ≊ 4.162 × 10−11 N
Question 29 Report
The total number of ATP produced during glycolysis is
Answer Details
During the process of glycolysis, a single glucose molecule is broken down into two molecules of pyruvate. During this metabolic pathway, there is a net gain of adenosine triphosphate (ATP) molecules. To understand how many ATP molecules are produced, let's break it down step by step.
1. **Initial ATP Investment:** Glycolysis initially requires an investment of 2 ATP molecules to phosphorylate glucose and convert it into a more reactive form during the early stages of the glycolytic pathway.
2. **ATP Production:** As glycolysis progresses, a total of 4 ATP molecules are produced. This occurs in the later steps of the pathway where adenosine diphosphate (ADP) is phosphorylated to form ATP. This is known as substrate-level phosphorylation.
3. **Net ATP Gain:** To find out the net gain of ATP through glycolysis, simply subtract the initial ATP investment from the total ATP produced:
Net ATP = Total ATP produced - Initial ATP investment
Net ATP = 4 ATP - 2 ATP
Net ATP = 2 ATP
Thus, the net total number of ATP produced during glycolysis is 2 molecules.
Question 30 Report
The equivalent capacitance of the capacitors in the circuit above
Answer Details
apacitance in parallel = one at the top + one under = 2C
The two in the middle are in series = C2
The equivalent capacitance of the capacitors in the circuit above = C2 + 2C = 52 C
Question 31 Report
I
6 X + 6 H2 O → C6 H12 O6 + 6O2
III chlorophyll II IV
Use the diagram above to answer question that follows
The part labelled I is
Answer Details
The part labelled I in the diagram refers to **sunlight**.
Here's a simple explanation:
The given chemical equation is a representation of **photosynthesis**, a process by which green plants, algae, and some bacteria convert light energy, typically from the sun, into chemical energy stored in glucose (C6H12O6) and release oxygen (O2) as a by-product.
In the context of the equation:
- **6CO2 (Carbon Dioxide) + 6H2O (Water) → C6H12O6 (Glucose) + 6O2 (Oxygen)**
The arrow indicates the transformation that occurs during the process. The **chlorophyll** (labelled in the diagram) indicates the presence of chlorophyll pigments in the chloroplasts of plant cells which are essential for **absorbing sunlight**.
Since **sunlight** is the source of energy that powers this transformation, it is the correct component for the part labelled I in the diagram.
Question 32 Report
The gravitational force between two objects masses 1024 kg and 1027 kg is 6.67N. Calculate the distance between them [ G = 6.6 x 10−11 Nm2 kg−2 ]
Answer Details
To calculate the distance between two objects based on the gravitational force acting between them, we need to use the formula for gravitational force:
F = (G * m1 * m2) / r²
Where:
We need to compute r by rearranging the formula:
r² = (G * m1 * m2) / F
Therefore, the distance r is:
r = √((G * m1 * m2) / F)
Substitute the given values into the equation:
r = √((6.6 x 10-11 Nm²/kg² * 1024 kg * 1027 kg) / 6.67 N)
Calculating inside the square root:
G * m1 * m2 = 6.6 x 10-11 * 1024 * 1027 = 6.6 x 1040 Nm²
Then divide by the force:
6.6 x 1040 Nm² / 6.67 N = 0.99 x 1040 m²
Finally, calculate the square root:
r = √(0.99 x 1040)
r ≈ 1.0 x 1020 m
Therefore, the distance between the two objects is approximately 1.0 x 1020 m.
Question 33 Report
In a cross involving a heterozygous red flower plant (Rr) and a white flowered plant (rr). What is the probability that the offspring will be Rr?
Answer Details
By crossing Rr x rr
We obtain Rr , rr , rr , Rr
⇒ 50% = 12
Question 34 Report
Which of the following measuring instruments operates based on the heating effect of electric current?
Answer Details
Hot wire ammeters measure current by detecting the heat produced in a wire due to the electric current flowing through it.
Question 35 Report
The degree of precision of a vernier caliper is
Answer Details
The degree of precision of a vernier caliper is actually the **smallest value** that the vernier scale can measure, which can be considered as the resolution or least count of the instrument. The degree of precision for most standard vernier calipers is 0.01 cm (or 0.1 mm). This means that the caliper can measure dimensions down to a hundredth of a centimeter.
To understand why this is the case, consider the construction of a vernier caliper:
This alignment allows more precise measurements than the main scale alone. If the vernier scale has 10 divisions which coincide over a length equal to 9 divisions on the main scale, then each division of the vernier scale represents an extra 0.01 cm. Therefore, it allows measuring smaller intervals between the main scale markings very precisely.
Thus, you won't find vernier calipers with a degree of precision of 0.005 cm, 0.1 cm, or 1.0 cm as options in standard practice for precise measurement tools.
Question 36 Report
Two points on a velocity-time graph have coordinates (2s, 5m/s) and (4s, 15m/s). Calculate the mean acceleration
Answer Details
The mean acceleration of an object is determined by the change in velocity over the change in time. This is given by the formula:
Mean Acceleration (a) = (Final Velocity - Initial Velocity) / (Final Time - Initial Time)
From the velocity-time graph, we have the following points:
Initial Point: (2s, 5m/s)
Final Point: (4s, 15m/s)
Here, the Initial Velocity is 5m/s, the Final Velocity is 15m/s, the Initial Time is 2s, and the Final Time is 4s.
Plug these values into the formula:
Mean Acceleration (a) = (15m/s - 5m/s) / (4s - 2s)
Simplifying this, we get:
Mean Acceleration (a) = 10m/s / 2s = 5m/s²
The mean acceleration is therefore 5.0 m/s².
Question 37 Report
The formation of cilia and flagella in living cells is carried out with the help of
Answer Details
The formation of cilia and flagella in living cells is primarily carried out with the help of **centrioles**.
Here's a simple explanation:
Centrioles are cylindrical structures made up of microtubules. They are found in eukaryotic cells and play a critical role in cell division and the organization of the cell's cytoskeleton. However, their role extends beyond this to the formation of the basal bodies which seed the growth of cilia and flagella.
Cilia and flagella are microscopic, hair-like structures that protrude from the surface of certain eukaryotic cells. They are primarily involved in movement. Cilia often work like tiny oars, moving fluid across the cell's surface or propelling single-celled organisms. Flagella are typically longer and move in a whip-like fashion to propel cells, such as sperm cells.
Here's how centrioles contribute to the formation of these structures:
1. **Basal Body Formation**: Each cilium or flagellum grows out from a structure known as a basal body. The basal body is derived from the centrioles. During this process, a centriole migrates to the cell's surface and acts as a nucleation site for the growth of microtubules, which in turn form the structural core of cilia and flagella.
2. **Microtubule Organization**: The centrioles help organize microtubules in a "9+2" arrangement, which is characteristic of cilia and flagella. This refers to nine pairs of microtubules forming a ring around two central microtubules, giving these structures both stability and flexibility for movement.
Thus, centrioles are crucial as they provide the groundwork for the formation and proper functioning of cilia and flagella. They ensure that these structures are assembled correctly and are able to carry out their roles in cell movement and fluid transport.
Question 38 Report
Use the diagram above to answer the question that follows
The zone labelled II is called
Answer Details
The zone labelled II is called the littoral zone.
To explain: The littoral zone is a part of a body of water that is close to the shore. It is typically characterized by abundant sunlight and nutrient availability, making it a highly productive area for aquatic plants and animals. This zone supports various forms of life such as algae, small fish, and invertebrates. The key feature of the littoral zone is its proximity to the shoreline, where sunlight can penetrate to the bottom, allowing for photosynthesis to occur.
Question 39 Report
The major building block of an organism is...
Answer Details
The major building block of an organism is Carbon. Let me explain why in a simple yet comprehensive manner:
Carbon is a unique element found in all living organisms. Its importance comes from its ability to form stable bonds with many other elements, including hydrogen, oxygen, nitrogen, phosphorus, and sulfur. This versatility allows carbon to act as a backbone for the building of complex organic molecules, including proteins, nucleic acids (such as DNA and RNA), carbohydrates, and lipids. These molecules are essential for the structure, function, and regulation of the body's tissues and organs.
Here's why Carbon is indispensable:
In summary, Carbon is the primary building block of life due to its unique chemical properties that allow the formation of complex molecules necessary for life's structure and processes.
Question 40 Report
The dimension of power is
Answer Details
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Would you like to proceed with this action?