Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Which of the following is/are the limitations to the Rutherford's atomic models?
I. It is applicable when energy is radiated as electrons are revolving
II. It is applicable when energy is radiated in a continuous mode
III. It is applicable to an atom with only one electron in the other shell
Answer Details
Rutherford assumed that (I) energy is radiated when electrons are revolving (II) energy is radiated in a continuous mode. These are limitations of Rutherford's model
Question 2 Report
When two objects A and B are supplied with the same quantity of heat, the temperature change in A is obtained to be twice that of B. The mass of P is half that of Q. The ratio of the specific heat capacity of A to B is
Answer Details
θA = 2θB ,
mA | = | 12 | mB |
H = MCθ
mA
cA
θA
= mB
cB
θB
( 1/2 mB
)CA
(2θB
) = mB
cB
θB
CA CB | = | 11 |
⇒ 1 : 1
Question 3 Report
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Answer Details
Depth of sea can be measured by echo, a reflected sound waves.
Question 4 Report
The conductivity of gases at low pressure can be termed as
I. hot cathode emission
II. thermo ionic emission
III. cold cathode emission
IV. Field emission
Answer Details
As conduction of gases is at low pressure and high voltage, called field or cold cathode emission.
Question 5 Report
The height at which the atmosphere cases to exist is about 80km. If the atmospheric pressure on the ground level is 760mmHg, the pressure at a height of 20km above the ground level is
(ρm = 13.6g/cm3 ρ = 0.00013g/cm3 )
Answer Details
ρm
hm
= ρa
ha
13.68(760 - p) × 10−3
= 13 × 10−5
(20 × 103
)
760 | - | p | = | 13 × 10−5 × 20 × 103 13.68 × 10−3 | = | 19.00 | × | 101 |
760 - p = 190
p = 760 - 190 = 570mmHg
Question 6 Report
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Answer Details
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be rectilinear. When an object moves with constant speed, it means that it covers the same distance in equal time intervals. On the other hand, acceleration is the rate of change of velocity with time. If an object undergoes acceleration, its velocity changes with time. Therefore, if a body moves with constant speed and undergoes an acceleration, it means that its direction of motion changes while it covers equal distances in equal time intervals. This type of motion is called rectilinear motion, where the object moves in a straight line, but its velocity changes due to the acceleration. In contrast, circular motion is when an object moves in a circular path with a constant speed, while oscillatory motion is when an object moves back and forth around a fixed point. Rotational motion is when an object rotates around an axis. None of these descriptions fit the scenario of a body moving with constant speed and undergoing acceleration, so the answer is rectilinear motion.
Question 7 Report
Heat may be transferred by conduction, convention and radiation. By which of these methods does heat travel through vacuum?
Answer Details
Heat can be transferred by conduction, convection, and radiation. Conduction is the transfer of heat through a material by the movement of heat-carrying particles, such as atoms or molecules, from one part of the material to another. This method of heat transfer is not possible in a vacuum, as there are no particles present to carry heat. Convection is the transfer of heat by the movement of a fluid, such as air or water. This method of heat transfer is also not possible in a vacuum, as there are no fluids present to carry heat. Radiation is the transfer of heat through electromagnetic waves, such as light or infrared radiation. This method of heat transfer does not require any material or fluid medium, and can therefore occur in a vacuum. Therefore, the answer is "Radiation only".
Question 8 Report
Gases conduct electricity under
Answer Details
Gases conduct electricity under low pressure and high voltage
Question 9 Report
The following are parts of the eye
I. Retina
II. Pupil
III. Iris
The correct equivalent in the camera in the same order are
Answer Details
- retina is similar to film
- pupil is similar to aperture
- iris is similar to diaphragm
Question 10 Report
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Answer Details
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Question 11 Report
Three resistors with resistance 200Ω, 500Ω and 1kΩ are connected in series. A 6v battery is connected to either end of the combination. Calculate the potential difference between the ends of 200Ω resistance.
Answer Details
To calculate the potential difference between the ends of the 200Ω resistance, we need to use Ohm's Law, which states that the potential difference (V) across a resistor is equal to the current (I) flowing through the resistor multiplied by the resistance (R) of the resistor. First, we need to find the total resistance of the series combination of resistors. We add up the individual resistances: Total resistance = 200Ω + 500Ω + 1kΩ = 1.7kΩ Next, we can use Ohm's Law to find the current flowing through the circuit. We know that the battery voltage is 6V, and the total resistance is 1.7kΩ: I = V / R = 6V / 1.7kΩ = 0.0035A Now we can use Ohm's Law again to find the potential difference across the 200Ω resistor: V = IR = 0.0035A * 200Ω = 0.7V Therefore, the potential difference between the ends of the 200Ω resistance is 0.7V. The correct answer is option B.
Question 12 Report
Water and Kerosine are drawn respectively into the two limbs of a Hare's apparatus. The destiny of water is 1.0gcm−3 and the density of kerosine is 0.80gcm−3 . If the height of the water column is 20.0cm, calculate the height of the kerosine column.
Answer Details
Devices with different liquids
d1
h1
= d2
h2
1 × 20 = 0.8 × h
h | = | 200.8 | = | 25cm |
Question 13 Report
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Answer Details
v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
v | = | 2 × 4x | = | 8 | ms |
Question 14 Report
A single force which produces the same effect as a set of forces acting together at a point is known as the
Answer Details
The single force which produces the same effect as a set of forces acting together at a point is known as the "resultant". In other words, the resultant is the net force that results from combining all the individual forces acting on an object. It represents the combined effect of all the forces acting on the object and is the force that would produce the same motion as the original set of forces acting together. Therefore, when solving problems in physics, it is often useful to find the resultant force in order to determine the overall effect of multiple forces on an object.
Question 15 Report
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Answer Details
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Question 16 Report
Which of the following media allow the transmission of sound waves through them?
I. air
II. liquid
III. solids
Answer Details
Sound waves are disturbances in a medium that propagate through the medium and transfer energy from one point to another. The transmission of sound waves depends on the physical properties of the medium, including its elasticity and density. Air (Option I) is a gas that is compressible and has a relatively low density, which makes it an excellent medium for transmitting sound waves. Liquids (Option II) are also able to transmit sound waves, although the speed of sound in liquids is slower than in gases because liquids are more dense and less compressible. Solids (Option III) are able to transmit sound waves as well, but their density and elasticity make them more rigid, which means that sound waves in solids tend to be transmitted as elastic waves or mechanical waves, rather than as acoustic waves. Therefore, the correct answer is "I, II, and III".
Question 17 Report
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because
Answer Details
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because all the heat is used to break the bonds holding the molecules of the solid together
Question 18 Report
Which of the following readings cannot be determined with a meter rule?
Answer Details
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Question 19 Report
A supply of 400V is connected across capacitors of 3μf and 6μf in series. Calculate the charge
Answer Details
CT | = | C1 × C2 C1 + C2 |
= | 3 × 63 + 6 |
= 189
= 2μf
Q = CV
⇒ 2 × 10−6
× 400
⇒ 800 × 10−6
C = 8 × 10−4
C
Question 20 Report
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Answer Details
P = 0.45cm, L = 60cm, Eff = 75/π%
VR | (Screw | system) | = | 2πrP | = | 2πLP |
M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Question 21 Report
Neutrons were discovered by
Answer Details
Neutrons were discovered by James Chadwick. In 1932, he conducted an experiment in which he bombarded a thin sheet of beryllium with alpha particles. He observed that a new type of radiation was emitted that was not affected by electric or magnetic fields. He concluded that this radiation was composed of particles that were neutral and had a mass similar to that of a proton. He called these particles "neutrons," and his discovery revolutionized our understanding of atomic structure and led to the development of nuclear energy.
Question 22 Report
When the temperature of a liquid is increased, its surface tension
Answer Details
Surface tension or elasticity of a fluid decreases with increased in temperature
Question 23 Report
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Answer Details
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Question 24 Report
According to kinetic molecular model, in gases
Answer Details
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Question 25 Report
Which of the following equations is the correct definition of the reactance of an indicator L?
Answer Details
The correct definition of the reactance of an inductor L is: Reactance = (Amplitude of voltage) ÷ (Amplitude of current) The reactance of an inductor is a measure of the opposition offered by the inductor to the flow of alternating current (AC). It is denoted by the symbol Xl and is measured in ohms. When AC flows through an inductor, a magnetic field is generated around the inductor, which opposes any changes in the current flowing through it. This opposition to the flow of current is called reactance. The reactance of an inductor depends on its inductance, frequency of the AC signal, and the amplitude of the AC signal. However, the reactance of an inductor is directly proportional to the frequency of the AC signal and the inductance of the inductor. The reactance of an inductor is also affected by the amplitude of the AC signal, but this effect is not as significant as the other two factors. is the correct definition of the reactance of an inductor, as it expresses the ratio of the amplitude of voltage to the amplitude of current, which is a common way to define reactance. is incorrect, as it represents the power delivered by the AC signal, not the reactance. and are also incorrect, as they involve squaring either the amplitude of current or the amplitude of voltage, which is not a valid method of calculating reactance. Therefore, the correct option is.
Question 26 Report
When water is boiling, it
Answer Details
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Question 27 Report
A rectangular solid black has length 10cm, breadth 5cm and height 2cm. If it lies on a horizontal surface, and has density 100kg/m3 , calculate the pressure it exerts on the surface.
Answer Details
To calculate the pressure that the rectangular solid exerts on the surface, we need to use the formula for pressure: Pressure = Force / Area In this case, the force is the weight of the rectangular solid, which we can calculate using the formula: Weight = Mass x Gravity The mass of the rectangular solid can be calculated using its density and volume: Mass = Density x Volume The volume of the rectangular solid is simply its length x breadth x height: Volume = Length x Breadth x Height = 10 cm x 5 cm x 2 cm = 100 cm3 We need to convert this volume to cubic meters to use the density given in kg/m3: Volume = 100 cm3 = 0.0001 m3 Now we can calculate the mass: Mass = Density x Volume = 100 kg/m3 x 0.0001 m3 = 0.01 kg The gravity is the acceleration due to gravity, which we can assume to be 9.81 m/s2. Therefore, the weight is: Weight = Mass x Gravity = 0.01 kg x 9.81 m/s2 = 0.0981 N Now we can use this weight to calculate the pressure on the surface. The surface area in contact with the rectangular solid is simply its length x breadth: Area = Length x Breadth = 10 cm x 5 cm = 50 cm2 We need to convert this area to square meters: Area = 50 cm2 = 0.005 m2 Therefore, the pressure is: Pressure = Force / Area = 0.0981 N / 0.005 m2 = 19.62 N/m2 We can convert this to units of N/cm2 or N/mm2 if desired. This is equivalent to: Pressure = 0.1962 N/cm2 = 0.0001962 N/mm2 So the pressure that the rectangular solid exerts on the surface is 19.62 N/m2, which is approximately 20 N/m2. Therefore, the answer is 200 N/m2.
Question 28 Report
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Answer Details
If a body moves with a constant speed but at the same time undergoes an acceleration, its motion is called rectilinear motion. This means that the body moves in a straight line and its speed changes at a constant rate, causing an acceleration. It is different from oscillation, circular and rotational motions which involve changes in direction, as well as changes in speed.
Question 29 Report
Radio waves belongs to the class of ware whose velocity is about
Answer Details
Radio waves belong to the class of waves whose velocity is approximately 3 x 10^8 m/s. This velocity is commonly denoted as the speed of light, which is the speed at which all electromagnetic waves, including radio waves, travel in a vacuum. This constant velocity is one of the fundamental principles of physics and is important in understanding the behavior and properties of light and other electromagnetic waves. The speed of light is incredibly fast, and it's difficult for us to imagine just how fast it is. To put it into perspective, light can travel around the Earth's equator almost 7.5 times in just one second. This high speed is essential for radio communication, as it enables radio waves to travel long distances in a short amount of time, allowing us to communicate with people and devices far away from us.
Question 30 Report
The diagram above represents the stress-strain graph of a loaded wire. Which of these statements is correct?
Answer Details
- I is the elastic limit
- the end of the constant part J is the yield point
- L is the break point.
Question 31 Report
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Answer Details
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Question 32 Report
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Answer Details
all the parallel forces must be equal in magnitude and direction
Question 33 Report
When the downward current flows in a straight vertical conductor, the direction of its magnetic field at a point due north of the wire is
Answer Details
At a point due N of the wire, the field is due east, at a point due S of the wire, the field is due west.
Question 34 Report
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Answer Details
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
P1 V1 T1 | = | P2 V2 T1 |
V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Question 35 Report
Workdone on an object to bring it to a certain point in space is called
Answer Details
The work done on an object to bring it to a certain point in space is called "Potential Energy". Potential energy is a form of energy that an object possesses due to its position relative to other objects. When an object is lifted or moved to a higher point against gravity, work is done on it, and this work is stored as potential energy. The potential energy of an object is directly proportional to its height and mass. It can be converted into other forms of energy, such as kinetic energy, when the object is released or allowed to move freely. Therefore, potential energy is a type of stored energy that an object has due to its position, and it can be released to do work.
Question 36 Report
If the time of flight is 96seconds, calculate the horizontal range through the point of projection.
Answer Details
Time of flight, T = 96s
R = (Ucosθ) *time* T = 640 × 96 = 61,440m
Question 37 Report
Efficiency of conduction in liquids and gases compared to solids is
Answer Details
The efficiency of conduction in liquids and gases compared to solids is generally less efficient. This means that solids are better conductors of heat and electricity than liquids and gases. This is because the particles in solids are closely packed and are tightly bound to one another, allowing heat and electricity to flow easily through the material. On the other hand, the particles in liquids and gases are more spread out and less tightly bound, making it more difficult for heat and electricity to flow through these materials. However, it is important to note that the efficiency of conduction can vary depending on the specific liquid or gas and the specific solid being compared. Some liquids and gases may have properties that make them better conductors than certain solids, but this is not a general rule.
Question 38 Report
According to kinetic molecular model, in gases
Answer Details
In kinetic molecular model, gases are energised and thus moves freely, fast as they occupy specific space
Question 39 Report
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce temperature increase because
Answer Details
When a solid is heated to its melting point, the heat supplied is used to overcome the intermolecular forces holding the molecules in a fixed position, resulting in the breaking of these bonds. As a result, the solid transforms into a liquid without any change in temperature. This is because the heat energy supplied is used in breaking the bonds between molecules rather than increasing the kinetic energy of the molecules, which is what causes an increase in temperature. Therefore, the correct option is: "all the heat is used to break the bonds holding the molecules of the solid together."
Question 40 Report
A car moving at 20m/s with its horn blowing (f = 1200Hz) is chasing another car going at 15m/s. What is the apparent frequency of the horn as heard by the driver being chased?
Answer Details
f1 | = | f(v - vo )v - vs | = | 1200(340 - 15)340 - 20 | = | 1.22KHz |
Would you like to proceed with this action?