Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Answer Details
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Question 2 Report
The mass of water vapour in a given volume of air is 0.05g at 20°C, while the mass of water vapour required to saturate it at the same temperature is 0.15g. Calculate the relative humidity of the air.
Answer Details
Relative humidity is a measure of how much water vapor the air is holding compared to the maximum amount it could hold at a given temperature. It is expressed as a percentage. To calculate the relative humidity of the air in this problem, we need to use the formula: Relative humidity = (mass of water vapor in air / mass of water vapor required for saturation) x 100% We are given that the mass of water vapor in the air is 0.05g and the mass of water vapor required for saturation at the same temperature is 0.15g. Plugging these values into the formula, we get: Relative humidity = (0.05 / 0.15) x 100% = 33.33% Therefore, the relative humidity of the air is 33.33%. So the answer is 33.33%.
Question 3 Report
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Answer Details
all the parallel forces must be equal in magnitude and direction
Question 4 Report
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because
Answer Details
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because all the heat is used to break the bonds holding the molecules of the solid together
Question 5 Report
A well 1km deep is filled with a liquid of density 950kg/m3 and g = 10m/s2 , the pressure at the bottom of the well is
Answer Details
P = Pa + ρgh = (1.00 × 105
) + (950 × 10 × 1000)
P = 105
+ (95 × 105
) = 105
(1 + 95) = 96 × 105
P = 9.6 × 106
N/m2
Question 6 Report
Which of the following media allow the transmission of sound waves through them?
I. air
II. liquid
III. solids
Answer Details
Sound waves are disturbances in a medium that propagate through the medium and transfer energy from one point to another. The transmission of sound waves depends on the physical properties of the medium, including its elasticity and density. Air (Option I) is a gas that is compressible and has a relatively low density, which makes it an excellent medium for transmitting sound waves. Liquids (Option II) are also able to transmit sound waves, although the speed of sound in liquids is slower than in gases because liquids are more dense and less compressible. Solids (Option III) are able to transmit sound waves as well, but their density and elasticity make them more rigid, which means that sound waves in solids tend to be transmitted as elastic waves or mechanical waves, rather than as acoustic waves. Therefore, the correct answer is "I, II, and III".
Question 7 Report
The limiting frictional force between two surface depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surface
Answer Details
The correct answer is "I and IV only". The limiting frictional force between two surfaces depends on the normal reaction between the surfaces (I) and the nature of the surface (IV). The normal reaction is the force that the surfaces exert on each other perpendicular to the plane of contact. The greater the normal reaction, the greater the frictional force that can be applied before motion occurs. The nature of the surface is determined by factors such as roughness, hardness, and texture, which can affect the frictional force. The area of surface in contact (II) does not directly affect the limiting frictional force, although it can affect the force required to initiate motion. For example, if the area of contact is small, the pressure between the surfaces will be higher, making it harder to initiate motion. The relative velocity between the surfaces (III) also does not directly affect the limiting frictional force, although it can affect the force required to maintain motion. If the surfaces are already in motion, a lower force may be required to keep them moving than to initiate motion. In summary, the limiting frictional force between two surfaces depends primarily on the normal reaction and the nature of the surface, and is not directly affected by the area of contact or the relative velocity between the surfaces.
Question 8 Report
Lamps in domestic lightings are usually in
Answer Details
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Question 9 Report
One newton × One meter equals?
Answer Details
One newton times one meter is equal to one Joule. A newton is the unit of measurement for force, and a meter is the unit of measurement for distance. When force is applied over a distance, work is done, which is measured in Joules. Therefore, one newton multiplied by one meter results in one Joule of work done. The other options listed (one water, one ampere, one kilogram) are not correct units of measurement for this calculation.
Question 10 Report
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Answer Details
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Question 11 Report
In the molecular explanation of conduction, heat is transferred by the
Answer Details
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Question 12 Report
The lead-acid accumulator consists of
Answer Details
- the positive pole is lead peroxide (PbO2
)
- the negative pole is head
- the electrolyte is H2
SO4
Question 13 Report
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Answer Details
P = 0.45cm, L = 60cm, Eff = 75/π%
| VR | (Screw | system) | = | 2πrP | = | 2πLP |
| M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Question 14 Report
Efficiency of conduction in liquids and gases compared to solids is
Answer Details
The efficiency of conduction in liquids and gases compared to solids is generally less efficient. This means that solids are better conductors of heat and electricity than liquids and gases. This is because the particles in solids are closely packed and are tightly bound to one another, allowing heat and electricity to flow easily through the material. On the other hand, the particles in liquids and gases are more spread out and less tightly bound, making it more difficult for heat and electricity to flow through these materials. However, it is important to note that the efficiency of conduction can vary depending on the specific liquid or gas and the specific solid being compared. Some liquids and gases may have properties that make them better conductors than certain solids, but this is not a general rule.
Question 15 Report
When blue and green colours of light are mixed, the resultant colour is
Question 16 Report
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Answer Details
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Question 17 Report
If the time of flight is 96seconds, calculate the horizontal range through the point of projection.
Answer Details
Time of flight, T = 96s
R = (Ucosθ) *time* T = 640 × 96 = 61,440m
Question 18 Report
When the downward current flows in a straight vertical conductor, the direction of its magnetic field at a point due north of the wire is
Answer Details
At a point due N of the wire, the field is due east, at a point due S of the wire, the field is due west.
Question 19 Report
The diagram shows four positions of the bob of a simple pendulum. At which of these positions does the bob have maximum kinetic energy and minimum potential energy
Answer Details
At position 1, the bob of the simple pendulum has the maximum potential energy and zero kinetic energy. At position 4, the bob has the maximum kinetic energy and minimum potential energy. To understand this, we need to know that the energy of a simple pendulum is converted back and forth between kinetic energy and potential energy as it swings back and forth. When the bob is at its highest point (position 1), it has the maximum potential energy because it is farthest from the ground and has the most potential to move downward. At this point, the bob has zero kinetic energy because it is momentarily at rest. As the bob swings downward towards the equilibrium point, it gains speed and its potential energy is converted to kinetic energy. At the equilibrium point (position 2), the bob has equal amounts of kinetic and potential energy. As the bob continues to move downward, its potential energy decreases and its kinetic energy increases. At position 3, the bob has minimum potential energy and some amount of kinetic energy. At the lowest point of its swing (position 4), the bob has maximum kinetic energy because it is moving at its fastest speed. At this point, the bob has minimum potential energy because it is closest to the ground and has the least amount of potential to move downward. So, to summarize, the bob has maximum potential energy at position 1, equal amounts of kinetic and potential energy at position 2, minimum potential energy at position 3, and maximum kinetic energy at position 4.
Question 20 Report
Gases conduct electricity under
Answer Details
Gases conduct electricity under low pressure and high voltage
Question 21 Report
A single force which produces the same effect as a set of forces acting together at a point is known as the
Answer Details
The single force which produces the same effect as a set of forces acting together at a point is known as the "resultant". In other words, the resultant is the net force that results from combining all the individual forces acting on an object. It represents the combined effect of all the forces acting on the object and is the force that would produce the same motion as the original set of forces acting together. Therefore, when solving problems in physics, it is often useful to find the resultant force in order to determine the overall effect of multiple forces on an object.
Question 22 Report
A cone is in unstable equilibrium has its potential energy
Answer Details
In unstable equilibrium, potential energy decreases as the height decreases.
Question 23 Report
In semi-conductor, the carriers of current at room temperature are
Answer Details
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Question 24 Report
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Answer Details
n = 200, S = 132 rev/min, v = 350m/s2
| f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
| λ | = | vf | = | 350440 | = | 0.875m |
Question 25 Report
Which of these is observed when air is pumped out of a discharge tube without lowering its pressure
Answer Details
Conduction takes places in gases when air is pumped out of a discharged tube under reduced pressure.
Question 26 Report
If the attraction of the sun is suddenly ceased, the earth would continue to move in a straight line making a tangent with the original orbit. This statement is derived from Neutron's
Answer Details
The correct answer is the First law of motion. The First law of motion, also known as the law of inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In this case, the earth is moving in its orbit around the sun because of the force of gravity between the two objects. If the force of gravity suddenly ceased, the earth would no longer be acted upon by an external force and would continue to move in a straight line, making a tangent with its original orbit. This idea is attributed to Sir Isaac Newton, who developed the laws of motion and the law of universal gravitation. However, the specific statement mentioned in the question is derived from the First law of motion.
Question 27 Report
A microscope is focused on a mark on a table, when the mark is covered by a plate of glass 2m thick, the microscope has to be raised 0.67cm for the mark to be once more in focus. Calculate the refractive index.
Answer Details
R = th = 2cm, d = 0.67cm
| n | = | RA | = | RR.d | = | 22-0.67 | = | 1.52 |
Question 28 Report
"Sum of all forces acting on a body is zero." This condition represents equilibrium'
Answer Details
First condition
Question 29 Report
The Earth's magnetic equator passes through Jos in Nigeria. At Jos, the
Answer Details
The Earth has a magnetic field that is generated by the movement of molten iron in its core. The magnetic field has different properties at different locations on the Earth's surface. The magnetic equator is an imaginary line on the Earth's surface where the inclination or tilt of the Earth's magnetic field is zero, meaning that the magnetic field lines are parallel to the Earth's surface. At Jos, Nigeria, the Earth's magnetic equator passes through, which means that the angle of inclination or dip of the Earth's magnetic field is zero. Therefore, the correct answer is that the angle of dip is zero. This means that a magnetic needle suspended by a thread or placed on a horizontal surface would remain horizontal and not point downwards or upwards, as it would at other locations on the Earth's surface. This makes Jos an important location for studying the Earth's magnetic field and for conducting experiments related to magnetism.
Question 30 Report
According to kinetic molecular model, in gases
Answer Details
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Question 31 Report
A man on a bench will exert the greatest pressure on the bench when he
Answer Details
The man on the bench will exert the greatest pressure when he stands on the toes of one foot. This is because when he stands on one foot, all his weight is concentrated on a smaller surface area of the bench, resulting in more pressure. The pressure he exerts is calculated by dividing his weight by the surface area in contact with the bench. When he stands on one foot, the surface area is smaller, which means the pressure exerted is greater. In comparison, when he lies flat on his back or belly, or when he stands on both feet, his weight is distributed over a larger surface area, resulting in less pressure.
Question 32 Report
The momentum of a car moving at a constant speed in a circular track
Answer Details
Movement of an object in a circle with an acceleration towards its center is provided by change in velocity and centripetal force a α V α Fc
Question 33 Report
According to kinetic molecular model, in gases
Answer Details
In kinetic molecular model, gases are energised and thus moves freely, fast as they occupy specific space
Question 34 Report
The mass of a nucleus is the
Answer Details
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Question 35 Report
An alternating current can induce voltage because it has
Answer Details
An alternating current can induce voltage because it has a varying magnetic field. An alternating current (AC) is an electrical current that periodically reverses direction, unlike direct current (DC), which flows in one direction. When an AC current flows through a wire, it generates a magnetic field that changes direction with the current. As the current alternates, the magnetic field expands and contracts, inducing an electromotive force (EMF) in any nearby conductor or coil of wire. This phenomenon is known as electromagnetic induction, and it is the basis for the operation of many electrical devices, such as generators and transformers. The induced voltage depends on the strength and rate of change of the magnetic field and the number of turns in the coil. In summary, an alternating current can induce voltage because it creates a varying magnetic field, which in turn generates an electromotive force in nearby conductors or coils of wire, according to the principle of electromagnetic induction.
Question 36 Report
The lower fixed part of a faulty thermometer reads 2°C while the upper fixed point is 100°C.
What is the true temperature when the thermometer reads 51°C?
Answer Details
Since the thermometer is faulty, it is not measuring the temperature accurately. To find the true temperature, we need to determine the extent of the error in the thermometer. We can do this by comparing the difference between the lower fixed point and the reading with the difference between the upper fixed point and the true temperature. Since the lower fixed point reads 2°C and the upper fixed point reads 100°C, and the thermometer reading is 51°C, we can calculate the error as follows: True temperature = (51°C - 2°C) / (51°C - 2°C) * (100°C - 51°C) + 51°C = 50°C So, the true temperature when the thermometer reads 51°C is 50°C, which is option B.
Question 37 Report
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Answer Details
Depth of sea can be measured by echo, a reflected sound waves.
Question 38 Report
The height at which the atmosphere cases to exist is about 80km. If the atmospheric pressure on the ground level is 760mmHg, the pressure at a height of 20km above the ground level is
(ρm = 13.6g/cm3 ρ = 0.00013g/cm3 )
Answer Details
ρm
hm
= ρa
ha
13.68(760 - p) × 10−3
= 13 × 10−5
(20 × 103
)
| 760 | - | p | = | 13 × 10−5 × 20 × 103 13.68 × 10−3 | = | 19.00 | × | 101 |
760 - p = 190
p = 760 - 190 = 570mmHg
Question 39 Report
When water is boiling, it
Answer Details
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Question 40 Report
Workdone on an object to bring it to a certain point in space is called
Answer Details
The work done on an object to bring it to a certain point in space is called "Potential Energy". Potential energy is a form of energy that an object possesses due to its position relative to other objects. When an object is lifted or moved to a higher point against gravity, work is done on it, and this work is stored as potential energy. The potential energy of an object is directly proportional to its height and mass. It can be converted into other forms of energy, such as kinetic energy, when the object is released or allowed to move freely. Therefore, potential energy is a type of stored energy that an object has due to its position, and it can be released to do work.
Would you like to proceed with this action?