Ana loda....
|
Latsa & Riƙe don Ja Shi Gabaɗaya |
|||
|
Danna nan don rufewa |
|||
Tambaya 1 Rahoto
A secondary alkanol can be oxidized to give an
Bayanin Amsa
A secondary alkanol is an alcohol with two carbon atoms attached to the carbon bearing the hydroxyl group (-OH). Secondary alkanols can be oxidized by a strong oxidizing agent, such as potassium dichromate (K2Cr2O7), to give an alkanone. During the oxidation process, the oxygen atom from the oxidizing agent replaces the hydroxyl group of the secondary alkanol to form a carbonyl group (C=O) in the alkanone. Since alkanones contain a carbonyl group, they are also known as ketones. Therefore, the answer to the question is alkanone, as secondary alkanols can be oxidized to form ketones.
Tambaya 2 Rahoto
Which of the following reactions is an oxidation process?
Tambaya 3 Rahoto
What technique is suitable for separating a binary solution of potassium chloride and potassium trioxochlorate (V)?
Bayanin Amsa
Fractional crystallization is the most suitable technique for separating a binary solution of potassium chloride and potassium trioxochlorate (V). This is because fractional crystallization is a process that separates a mixture of substances based on their solubility in a solvent at a particular temperature. In this case, potassium chloride and potassium trioxochlorate (V) have different solubilities in a solvent such as water at different temperatures. By carefully controlling the temperature, the solubility of each compound can be selectively increased or decreased, allowing them to be separated by crystallization. The less soluble compound will form crystals first and can be separated from the more soluble compound, which remains in the solution. Therefore, fractional crystallization can be used to separate potassium chloride and potassium trioxochlorate (V) in a binary solution.
Tambaya 4 Rahoto
Which of the following describes the chemical property of acids?
Tambaya 5 Rahoto
The heat of formation of ethene, C2 H4 is 50 kJmol−1 , and that of ethane, C2 H6 is -82kJmol−1 . Calculate the heat evolved in the process:
C2 H4 + H2 → C2 H6
Bayanin Amsa
The heat evolved in a chemical reaction can be calculated by subtracting the heat of formation of the reactants from the heat of formation of the products. In this case, the reactants are ethene (C2H4) and hydrogen (H2), and the product is ethane (C2H6). The heat of formation of ethene is 50 kJ/mol and that of hydrogen is 0 kJ/mol (because hydrogen is a reference element). The heat of formation of ethane is -82 kJ/mol. So, the heat evolved in the reaction is given by: Heat evolved = (Heat of formation of products) - (Heat of formation of reactants) = (-82 kJ/mol) - (50 kJ/mol + 0 kJ/mol) = -82 kJ/mol - 50 kJ/mol = -132 kJ/mol. Therefore, the heat evolved in the process is -132 kJ.
Tambaya 6 Rahoto
Which of the following represents the kind of bonding present in ammonium chloride?
Bayanin Amsa
Ammonium chloride contains both ionic and covalent bonds. In ammonium chloride, the ammonium ion (NH4+) is positively charged and the chloride ion (Cl-) is negatively charged. These ions are held together by ionic bonds, which are formed between positively and negatively charged ions. However, the bond between the hydrogen atom in the ammonium ion and the nitrogen atom in the ammonium ion is also a covalent bond. This type of covalent bond is known as a dative covalent bond, or a coordinate covalent bond, because the electron pair being shared is supplied by one atom only (the nitrogen atom in this case). So, the kind of bonding present in ammonium chloride is both ionic and dative covalent. In simple terms, ammonium chloride contains both ionic bonds between its positive and negative ions, and a dative covalent bond between the hydrogen atom and nitrogen atom within the ammonium ion.
Tambaya 7 Rahoto
The combustion of carbon(ii)oxide in oxygen can be represented by equation.
2CO + O2 ? 2CO2
Calculate the volume of the resulting mixture at the end of the reaction if 50cm3 of carbon(ii)oxide was exploded in 100cm3 of oxygen
Bayanin Amsa
Tambaya 8 Rahoto
Which of the following factors will speed up the rate of evolution of carbon (iv) oxide in the reaction below?
2HCl + CaCO3 → CaCl2 + H2 O + CO2
Bayanin Amsa
The following factors increase a reaction rate
- Increase in concentration of reactants
- Increase in temperature
- Addition of catalyst
- Increase in the surface area of reactant(s)
Tambaya 9 Rahoto
For the general equation of the nature
XP + yQ ⇌ mR + nS, the expression for the equilibrium constant is
Bayanin Amsa
The expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is: Kc = [R]m[S]n / [P]x[Q]y where Kc is the equilibrium constant, [R] and [S] are the concentrations of the products, and [P] and [Q] are the concentrations of the reactants, all raised to the stoichiometric coefficients (m, n, x, y) in the balanced equation. This equation is known as the equilibrium constant expression and it represents the ratio of the concentrations of the products and reactants at equilibrium for a particular chemical reaction. The equilibrium constant is a measure of how far a reaction proceeds towards completion, with a larger value indicating a greater extent of reaction. The equilibrium constant expression is derived from the law of mass action, which states that the rate of a chemical reaction is proportional to the product of the concentrations of the reactants raised to their stoichiometric coefficients. At equilibrium, the rates of the forward and reverse reactions are equal, and the equilibrium constant expression represents the ratio of the rate constants for these two reactions. Therefore, the correct expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is Kc = [R]m[S]n / [P]x[Q]y.
Tambaya 10 Rahoto
The molecular shape and bond angle of water are respectively
Bayanin Amsa
The shape of water molecule = Bent/ V- shaped
The bond angle of water = 104.5°/ 105°
Tambaya 11 Rahoto
200cm3 of 0.50mol/dm3 solution of calcium hydrogen trioxocarbonate (IV) is heated. The maximum weight of solid precipitated is
Bayanin Amsa
To solve this problem, we need to use the concept of stoichiometry and the solubility product constant (Ksp) of calcium hydrogen trioxocarbonate (IV). First, we need to write the balanced equation for the reaction that occurs when the solution of calcium hydrogen trioxocarbonate (IV) is heated: Ca(HCO3)2(s) → CaCO3(s) + H2O(g) + CO2(g) From the balanced equation, we can see that 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate. Therefore, we need to determine the number of moles of calcium hydrogen trioxocarbonate (IV) in the solution: Number of moles = concentration x volume Number of moles = 0.50 mol/dm³ x 0.2 dm³ Number of moles = 0.1 mol Since 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate, the number of moles of calcium carbonate produced will also be 0.1 mol. Next, we need to use the solubility product constant (Ksp) of calcium carbonate to determine the maximum amount of solid that can be precipitated: Ksp = [Ca²⁺][CO3²⁻] Ksp = 3.3 x 10⁻⁹ (at 25°C) At the maximum amount of solid precipitated, all the calcium carbonate formed will have precipitated, and the concentration of calcium ions and carbonate ions will be equal. Therefore, we can assume that the concentration of calcium ions and carbonate ions is both x. Substituting into the Ksp expression: Ksp = x² 3.3 x 10⁻⁹ = x² x = 5.74 x 10⁻⁵ mol/dm³ The mass of calcium carbonate precipitated can now be calculated: Mass = number of moles x molar mass Mass = 0.1 mol x 100.1 g/mol Mass = 10.01 g Therefore, the maximum weight of solid precipitated is approximately 10 g. Note that this calculation assumes that all the calcium carbonate precipitated as a solid, which may not always be the case in a real-world experiment. Additionally, this calculation does not take into account any losses due to filtration or other experimental errors.
Tambaya 12 Rahoto
Which of the following sets of operation will completely separate a mixture of sodium chloride, sand and iodine?
Bayanin Amsa
The set of operations that will completely separate a mixture of sodium chloride, sand, and iodine is: - filtration, to separate the sand and iodine from the sodium chloride - evaporation to dryness, to concentrate the sodium chloride solution and remove any remaining water - sublimation, to separate the iodine as a solid from the remaining sodium chloride By using these operations, you can separate each component of the mixture into separate, pure forms. The order of the operations is important because each step must be done in a way that effectively separates the components and does not interfere with subsequent steps.
Tambaya 13 Rahoto
How many electrons will be found in the nucleus of an atom with mass number 23 and 17 neutrons?
Bayanin Amsa
Electrons are not found in the nucleus of an atom. The nucleus of an atom only contains protons and neutrons, while electrons are located outside the nucleus in the electron cloud. The mass number of an atom is equal to the sum of the number of protons and the number of neutrons in the nucleus. Therefore, if an atom has a mass number of 23 and 17 neutrons, then the number of protons in the nucleus can be calculated as: Protons = Mass number - Neutrons Protons = 23 - 17 Protons = 6 This means that the nucleus of the atom contains 6 protons. The number of electrons in a neutral atom is equal to the number of protons, so the atom also contains 6 electrons in the electron cloud surrounding the nucleus. In summary, the answer is that there are 6 protons and 6 electrons in the atom.
Tambaya 14 Rahoto
Which of the following is the best starting material for the preparation of oxygen? Heating of trioxonitrate (v) with
Tambaya 15 Rahoto
Which of the following could not be alkane?
Bayanin Amsa
An alkane is a type of hydrocarbon with only single bonds between the carbon atoms. It follows the general formula CnH2n+2, where "n" is the number of carbon atoms in the molecule. To determine whether a molecule is an alkane or not, we can calculate its molecular formula and check if it fits the general formula of alkane. Out of the given options, the third one (C7H14) cannot be an alkane. To see why, let's use the general formula of alkane, which is CnH2n+2. For C7H14 to be an alkane, it should have 2n+2 = 2(7) + 2 = 16 hydrogen atoms. However, C7H14 has only 14 hydrogen atoms, which means it does not follow the general formula of alkane. Therefore, C7H14 cannot be an alkane. The other options are as follows: - C4H10: This is butane, which is an alkane with four carbon atoms. - C5H12: This is pentane, which is an alkane with five carbon atoms. - C8H18: This is octane, which is an alkane with eight carbon atoms. In summary, the molecule C7H14 cannot be an alkane because it does not follow the general formula of alkane, while the other options are all examples of alkanes.
Tambaya 16 Rahoto
Na2 CO3 + 2HCl → 2NaCl + H2 O + CO2
The indicator most suitable for this reaction should have a pH equal to
Bayanin Amsa
Methyl orange is the best indicator for the reaction with range 3.1 - 4.4.
Tambaya 17 Rahoto
Which of the following pollutants will lead to the depletion of ozone layer?
Bayanin Amsa
The pollutant that leads to the depletion of the ozone layer is chlorofluorocarbon (CFCs). CFCs are man-made chemicals that were widely used in the past as refrigerants, solvents, and propellants. When CFCs are released into the atmosphere, they rise into the stratosphere, where they come into contact with ozone molecules. The chlorine atoms in CFCs react with ozone, breaking apart the ozone molecules and causing a reduction in the overall amount of ozone in the stratosphere. This process continues until all of the ozone-depleting chlorine atoms have been depleted. The resulting decrease in ozone in the stratosphere leads to an increase in the amount of harmful ultraviolet radiation that reaches the Earth's surface, which can have negative impacts on human health and the environment.
Tambaya 18 Rahoto
The cost of discharging 6.0g of a divalent metal, X from its salt is ₦12.00. What is the cost of discharging 9.0g of a trivalent metal, Y from its salt under the same condition?
[X = 63, Y = 27, 1F = 96,500C]
Bayanin Amsa
For X: X2+
+ 2e−
→
X
2F = 63g
xF = 6g
x = 6×263=421F
421
F = N12.00
1F = 12421
= N63.00
1F is equivalent to N63.00.
For Y: Y3+
+ 3e−
→
Y
3F = 27g
xF = 9g
x = 3×927
= 1F
1F = N63.00
Tambaya 19 Rahoto
When chlorine water is exposed to bright sunlight, the following products are formed
Tambaya 20 Rahoto
Which important nitrogen-containing compound is produced in Haber's process?
Bayanin Amsa
The important nitrogen-containing compound that is produced in Haber's process is NH3, which is also known as ammonia. Haber's process is a chemical process used to produce ammonia by reacting nitrogen gas (N2) and hydrogen gas (H2) under high pressure and temperature in the presence of an iron catalyst. The reaction between nitrogen and hydrogen produces ammonia as the main product, along with some nitrogen and hydrogen gases that do not react. NH3 is an important compound that is widely used in industry for the production of fertilizers, plastics, and other chemical products. It is also used as a cleaning agent, a refrigerant, and a fuel for engines. In addition, NH3 is an essential compound for life, as it is a key component of amino acids, which are the building blocks of proteins.
Tambaya 21 Rahoto
Consider the reaction: A + 2B(g)⇌ 2C + D(g) (Δ H = +ve)
What will be the effect of decrease in temperature on the reaction?
Bayanin Amsa
The effect of a decrease in temperature on the reaction will be that the rate of the backward reaction will increase. In a chemical reaction, the rate of the forward and backward reactions are determined by the activation energy required for each step and the temperature of the system. When the temperature is decreased, the rate of the reaction decreases, and the rate of the backward reaction increases. This shift in the rate of the backward reaction means that there will be a shift in the position of the equilibrium of the reaction. As the rate of the backward reaction increases, the concentration of the reactants will increase and the concentration of the products will decrease, leading to a decrease in the overall yield of the products. In this reaction, as ΔH (the change in enthalpy) is positive, which means that the reaction is endothermic. Endothermic reactions absorb heat from the surroundings to proceed, so a decrease in temperature will lead to a decrease in the rate of the forward reaction and an increase in the rate of the backward reaction. This shift in the rate of the backward reaction will shift the position of the equilibrium of the reaction to the left, leading to an increase in the concentration of the reactants and a decrease in the concentration of the products.
Tambaya 22 Rahoto
The part of the total energy of a system that accounts for the useful work done in a system is known as
Bayanin Amsa
The part of the total energy of a system that accounts for the useful work done in a system is known as "Gibbs free energy". Gibbs free energy is a thermodynamic property that represents the amount of energy that can be converted into useful work in a system. It takes into account both the energy of the system and the entropy, or disorder, of the system. In other words, Gibbs free energy is a measure of the energy available to do work, taking into account the energy that is unavailable due to entropy. In simple terms, if a system has a high Gibbs free energy, it has a lot of energy available to do work, and if a system has a low Gibbs free energy, it has little energy available to do work.
Tambaya 23 Rahoto
Which of the following metals is the most essential in the regulation of blood volume, blood pressure and osmotic equilibrium?
Bayanin Amsa
The metal that is most essential in the regulation of blood volume, blood pressure, and osmotic equilibrium is sodium. Sodium is a key electrolyte that helps maintain the balance of fluids in the body, including blood volume and blood pressure. Sodium ions are positively charged and are attracted to negatively charged ions, such as chloride (Cl-) and bicarbonate (HCO3-), which together help regulate the pH of the blood. Sodium is also essential for maintaining osmotic equilibrium, which refers to the balance of solutes between cells and the extracellular fluid. Osmotic equilibrium is critical for proper cellular function and is regulated by the movement of water and electrolytes, including sodium, in and out of cells. While the other metals listed (zinc, manganese, and iron) are important for various functions in the body, such as enzyme activity and oxygen transport, they are not directly involved in regulating blood volume, blood pressure, and osmotic equilibrium in the same way that sodium is. Therefore, the answer is not options 1, 2, or 4, and the correct answer is: sodium.
Tambaya 24 Rahoto
Which of the following alkaline metals react more quickly spontaneously with water?
Bayanin Amsa
The alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are the second most reactive metals in the periodic table, and, like the Group 1 metals, have increasing reactivity in the higher periods. Beryllium (Be) is the only alkaline earth metal that does not react with water or steam, even if metal is heated to red heat. Additionally, beryllium has a resistant outer oxide layer that lowers its reactivity at lower temperatures.
Magnesium shows insignificant reaction with water, but burns vigorously with steam or water vapor to produce white magnesium oxide and hydrogen gas:
A metal reacting with cold water will produce metal hydroxide. However, if a metal reacts with steam, like magnesium, metal oxide is produced as a result of metal hydroxides splitting upon heating.
The hydroxides of calcium, strontium and barium are only slightly water-soluble but produce sufficient hydroxide ions to make the environment basic, giving a general equation of:
| Order of reactivity | Metal | Reactions with water or steam |
|---|---|---|
| most reactive | potassium (K) | very vigorous reaction with cold water |
| ↑ | sodium (Na) | vigorous reaction with cold water |
| ↓ | calcium (Ca) | less vigorous reaction with cold water |
| least reactive | magnesium (Mg) | slow reaction with cold water, vigorous with steam |
Tambaya 25 Rahoto
The two ions responsible for hardness in water are
Bayanin Amsa
The ions responsible for hardness in water are Ca2+ and/or Mg2+. Hardness in water refers to the presence of calcium and magnesium ions, which are commonly found in natural water sources such as rivers, lakes, and groundwater. These ions can react with soap to form insoluble compounds, reducing the effectiveness of soap and causing scaling in pipes and appliances. The hardness of water is often measured in terms of the concentration of calcium and magnesium ions, expressed as calcium carbonate equivalents (CaCO3).
Tambaya 26 Rahoto
Hydrogen diffused through a porous plug
Bayanin Amsa
Hydrogen gas (H2) diffuses faster than oxygen gas (O2) through a porous plug. This is because the rate of diffusion of a gas through a porous plug is inversely proportional to the square root of its molar mass. Since the molar mass of hydrogen (2 g/mol) is much smaller than that of oxygen (32 g/mol), the rate of diffusion of hydrogen through a porous plug is much faster than that of oxygen. To be more specific, the ratio of the diffusion rates of two gases through a porous plug is given by the equation: Rate of diffusion of gas A / Rate of diffusion of gas B = √(Molar mass of gas B / Molar mass of gas A) Using the molar masses of hydrogen and oxygen, we get: Rate of diffusion of hydrogen / Rate of diffusion of oxygen = √(32 g/mol / 2 g/mol) = √16 = 4 Therefore, hydrogen diffuses through a porous plug four times as fast as oxygen. Thus, the correct answer is: four times as fast as oxygen.
Tambaya 27 Rahoto
2-methylprop-1-ene is an isomer of
Bayanin Amsa
2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene. An isomer is a molecule that has the same molecular formula as another molecule, but a different arrangement of atoms. In this case, 2-methylprop-1-ene has the molecular formula C4H8, and so do 3-methyl but-1-ene and 2-methyl but-1-ene. The difference between these three molecules is in the arrangement of the carbon and hydrogen atoms. 2-methylprop-1-ene has a branched structure with a double bond between the first and second carbon atoms. 3-methyl but-1-ene is also a branched molecule, but the double bond is between the second and third carbon atoms. Similarly, 2-methyl but-1-ene has a double bond between the first and second carbon atoms, but it has a different branching pattern. On the other hand, pent-2-ene has five carbon atoms, so it has a different molecular formula than 2-methylprop-1-ene. Therefore, 2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene, but not of pent-2-ene, because it has the same molecular formula and a different arrangement of atoms compared to the other two isomers.
Tambaya 28 Rahoto
Which of the following statements does not show Rutherford's account of Nuclear Theory? An atom contains a region
Bayanin Amsa
Rutherford's account of Nuclear theory does not include the fact that atoms contain a massive region and cause deflection of from projectiles.
Tambaya 29 Rahoto
SO3 is not directly dissolved in water in the industrial preparation of H2 SO4 by the contact process because
Tambaya 30 Rahoto
When the end alkyl groups of ethyl ethanoate are interchanged, the compound formed is
Bayanin Amsa
The compound formed when the end alkyl groups of ethyl ethanoate are interchanged is ethyl propanoate. This is because ethyl ethanoate consists of two parts: the "ethyl" group and the "ethanoate" group. The ethyl group is a two-carbon chain, and the ethanoate group is a combination of a one-carbon chain and a carbonyl group (C=O) that is also attached to an oxygen atom. When the end alkyl groups are interchanged, the "ethyl" group is moved from the second carbon to the first carbon of the ethanoate group, and the "propanoate" group is formed. The "propanoate" group consists of a three-carbon chain and the carbonyl group. Therefore, the resulting compound is ethyl propanoate, which has a chemical formula of CH3CH2COOCH2CH3. This compound is commonly used as a flavoring agent and has a fruity odor reminiscent of pears.
Tambaya 31 Rahoto
What mass of magnesium would be obtained by passing a current of 2 amperes for 2 hours, through molten magnesium chloride?
[1 faraday = 96500C, Mg = 24]
Bayanin Amsa
Current (I) = 2A; Time (t) = 2 hours = 7200 secs
Q = It
= 2 x 7200 = 14400C
1 F = 96500C
x = 14400C
x = 1440096500
= 0.15F
Mg2+
+ 2e−
→
Mg
2F →
24g
0.15F →
x
2x = 24 x 0.15
x = 24×0.152
= 1.8g
Tambaya 32 Rahoto
Which quantum divides shells into orbitals?
Bayanin Amsa
The quantum that divides shells into orbitals is the "Azimuthal" quantum number, also known as the "angular momentum" quantum number. The azimuthal quantum number determines the shape of an electron's orbital, which is a region in space where there is a high probability of finding an electron. It describes the angular momentum of an electron in an atom and the number of subshells within a given shell. Each subshell is associated with a specific shape, and can hold a certain number of electrons. The azimuthal quantum number is represented by the letter "l" and can have integer values ranging from 0 to (n-1), where "n" is the principal quantum number. Each value of "l" corresponds to a different subshell shape: - l = 0 corresponds to an "s" subshell, which is spherical in shape. - l = 1 corresponds to a "p" subshell, which has a dumbbell shape with two lobes. - l = 2 corresponds to a "d" subshell, which has a more complex shape with four lobes and a doughnut-like ring. - l = 3 corresponds to an "f" subshell, which has an even more complex shape with eight lobes. The number of orbitals within a subshell is equal to 2l+1. For example, a "p" subshell (l = 1) has three orbitals (2l+1 = 3), which are labeled as "px", "py", and "pz". In summary, the azimuthal quantum number determines the shape of the electron's orbital and the number of subshells within a given shell, and it is represented by the letter "l".
Tambaya 33 Rahoto
Which of the following conditions will most enhance the spontaneity of a reaction?
Bayanin Amsa
The condition that will most enhance the spontaneity of a reaction is when ΔH is negative (i.e., the reaction releases heat) and ΔS is positive (i.e., the reaction increases the disorder or randomness of the system). This is because a negative ΔH indicates that the reaction releases energy, which is favorable for a spontaneous reaction, while a positive ΔS indicates that the system becomes more disordered, which is also favorable for spontaneous reactions. Among the given options, the first condition of a negative and greater ΔH than ΔS is the best option for enhancing the spontaneity of a reaction. The other options have either a positive ΔH or a zero ΔS, which is not favorable for spontaneous reactions.
Tambaya 34 Rahoto
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Bayanin Amsa
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Tambaya 35 Rahoto
Elements in the periodic table are arranged in the order of their
Bayanin Amsa
Elements in the periodic table are arranged in the order of their atomic numbers. The atomic number of an element is the number of protons in the nucleus of an atom of that element. The elements are arranged in order of increasing atomic number from left to right and from top to bottom in the periodic table. The elements in each row, also known as a period, have the same number of electron shells, while the elements in each column, also known as a group or family, have the same number of valence electrons. This arrangement makes it possible to predict the chemical and physical properties of an element based on its position in the periodic table. Therefore, the correct answer is: - atomic numbers
Tambaya 36 Rahoto
Methane is prepared in the laboratory by heating a mixture of sodium ethanoate with soda lime. The chemical constituent(s) of soda lime is/are
Bayanin Amsa
The chemical constituent of soda lime used to prepare methane in the laboratory is Ca(OH)2 (calcium hydroxide) and NaOH (sodium hydroxide). Soda lime is a mixture of these two compounds. When sodium ethanoate (NaC2H3O2) is heated with soda lime, it undergoes a reaction known as the Kolbe's reaction, which produces methane gas (CH4) as one of the products. The reaction can be represented as follows: 2NaC2H3O2 + 2Ca(OH)2 → 2CH4 + 2NaOH + 2CaCO3 In this reaction, the sodium ethanoate reacts with the calcium hydroxide to form calcium acetate (Ca(C2H3O2)2) and sodium hydroxide. The calcium acetate then decomposes to produce methane gas and calcium carbonate (CaCO3), which is a solid precipitate. Therefore, the chemical constituents of soda lime used to prepare methane in the laboratory are calcium hydroxide (Ca(OH)2) and sodium hydroxide (NaOH).
Tambaya 37 Rahoto
Burning magnesium ribbon in air removes which of the following
(i) oxygen (ii) nitrogen (iii) argon and (iv) carbon(iv)oxide?
Bayanin Amsa
Burning magnesium ribbon in air will remove oxygen (option i) from the air, but not nitrogen (option ii), argon (option iii), or carbon dioxide (option iv). When magnesium burns, it reacts with oxygen in the air to form magnesium oxide. The reaction can be represented by the following equation: 2Mg(s) + O2(g) → 2MgO(s) The magnesium in the ribbon combines with oxygen in the air to form solid magnesium oxide. This reaction is exothermic, which means that it releases heat and light energy. So, when magnesium ribbon is burned in air, it consumes the oxygen in the air to form magnesium oxide. However, nitrogen, argon, and carbon dioxide are not chemically reactive with magnesium, and therefore are not removed from the air by the burning of magnesium ribbon. In summary, the correct option is (i) only - burning magnesium ribbon in air removes oxygen only.
Tambaya 38 Rahoto
Which of the following does not support the fact that air is a mixture?
Bayanin Amsa
The option that does not support the fact that air is a mixture is "the constituents of air are in a fixed proportion by mass". Air is a mixture of different gases, primarily nitrogen (78%) and oxygen (21%), with small amounts of other gases such as carbon dioxide, argon, and neon. The proportion of each gas in air is not fixed and can vary depending on the location and other factors. For example, the amount of carbon dioxide in air can increase in areas with high levels of pollution, while the proportion of oxygen can decrease at high altitudes. Therefore, the composition of air is not in a fixed proportion by mass. On the other hand, the fact that air cannot be represented with a chemical formula and its constituents can be separated by physical means support the fact that air is a mixture. A chemical formula represents a pure substance, and since air is a mixture of gases, it cannot be represented by a single formula. Air can be separated into its individual components through physical means such as distillation or filtration, which is a characteristic of mixtures.
Tambaya 39 Rahoto
The IUPAC nomenclature of the compound
H3 C - CH(CH3 ) - CH(CH3 ) - CH2 - CH3
Tambaya 40 Rahoto
Which two gases can be used for the demonstration of the fountain experiment?
Bayanin Amsa
Two gases that can be used in the study of fountain experiment is ammonia gas and hydrogen chloride gas. The experiment introduces concepts like solubility and the gas laws at the entry level.
Za ka so ka ci gaba da wannan aikin?