Chargement....
Appuyez et maintenez pour déplacer |
|||
Cliquez ici pour fermer |
Question 1 Rapport
The energy of light of frequency 2.0 x 1015 Hz is (h = 6.63 x 10−34 Js)
Détails de la réponse
To determine the energy of light given its frequency, we can utilize the formula:
E = h × f
Where:
E is the energy of the photon in joules (J)
h is Planck's constant, approximately 6.63 × 10-34 J·s
f is the frequency of light in hertz (Hz)
Given the frequency f = 2.0 × 1015 Hz, we can substitute the known values into our equation:
E = 6.63 × 10-34 J·s × 2.0 × 1015 Hz
To simplify the calculation, multiply the numerical parts and then add the indices of 10:
E = (6.63 × 2.0) × (10-34 × 1015)
E = 13.26 × 10-19 J
This can be approximated to 1.33 × 10-18 J. Thus, the energy of light with the given frequency is 1.33 × 10-18 J.
Question 2 Rapport
The dimension of power is
Détails de la réponse
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Question 3 Rapport
What will be the weight of a man of mass 60kg standing in a lift if the lift is descending vertically at 3ms2 ?
Détails de la réponse
To find the apparent weight of a man of mass 60 kg standing in a descending lift, we first need to understand the concept of apparent weight. Apparent weight is the force that the man feels as his weight due to the reaction of the lift floor on him. When the lift accelerates, the apparent weight changes from his actual weight.
In this case, the lift is descending with a constant velocity of 3 m/s2. Since the acceleration is downward, it means the lift is accelerating negatively compared to an upward acceleration.
The formula to find the apparent weight (Wapparent) when in a lift is:
Wapparent = m(g - a)
Where:
Substituting these values into the formula, we get:
Wapparent = 60 (9.8 - 3)
Calculating further:
Wapparent = 60 × 6.8
Wapparent = 408 N
The closest option to 408 N in the answers provided is 420 N. Therefore, the correct answer is 420 N.
Question 4 Rapport
In the diagram above, the galvanometer is converted to
Détails de la réponse
To determine what the galvanometer is converted to in the described scenario, let’s first understand how a galvanometer can be transformed into different measuring devices:
1. Galvanometer to Voltmeter: To convert a galvanometer into a voltmeter, a high resistance (known as a multiplier) is connected in series with the galvanometer. This high resistance ensures that the voltmeter can measure a wide range of voltages without drawing significant current from the circuit.
2. Galvanometer to Ammeter: To convert a galvanometer into an ammeter, a low resistance (called a shunt) is connected in parallel with the galvanometer. This allows the majority of the current to pass through the shunt, enabling the ammeter to measure high currents without damaging the galvanometer.
Since the problem statement does not specify any additional details, a general observation is that a galvanometer is commonly converted into an ammeter using a shunt, especially in basic electrical circuits where current measurement is necessary. Therefore, from the options provided, **the galvanometer is most likely converted to an ammeter**.
**In summary**, if a low resistance is added in parallel with the galvanometer, it becomes an ammeter, while adding a high resistance in series would convert it into a voltmeter. Since the context commonly involves conversion for current measurement, the provided diagram likely represents a galvanometer converted into an ammeter.
Question 5 Rapport
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called
Détails de la réponse
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called the friction force.
Let me explain each of the options to clarify why friction force is the correct answer:
In summary, friction force is the force that acts to oppose sliding between surfaces in contact and acts tangentially, making it the correct answer.
Question 6 Rapport
Convert 60ºC to degree Fahrenheit
Détails de la réponse
To convert temperatures from Celsius to Fahrenheit, we use the formula:
F = (C × 9/5) + 32
Here, F represents the temperature in Fahrenheit, and C represents the temperature in Celsius.
Let's use this formula to convert 60ºC to Fahrenheit:
F = (60 × 9/5) + 32
First, multiply 60 by 9/5:
60 × 9/5 = 108
Next, add 32 to 108:
108 + 32 = 140
Therefore, 60ºC is equal to 140ºF.
Question 7 Rapport
Newton's law of cooling is valid only for a
Détails de la réponse
Newton's Law of Cooling states that the rate of heat loss of an object is directly proportional to the difference in temperature between the object and its surroundings, provided that this temperature difference is small.
Therefore, this law is only valid within a small temperature range.
Question 8 Rapport
A load of 300N is to be lifted by a machine with a velocity ratio of 2 and an efficiency of 60%. What effort will be applied to lift the load?
Détails de la réponse
To determine the effort needed to lift a load using a machine, we first need to understand some key concepts: **Load**, **Effort**, **Velocity Ratio** (VR), and **Efficiency**.
1. **Load** is the force or weight that needs to be lifted by the machine. In this case, the load is 300N.
2. **Velocity Ratio (VR)** is the ratio of the distance moved by the effort to the distance moved by the load. Given here as 2.
3. **Efficiency** of a machine is expressed as a percentage and is the ratio of the useful work output to the input work done by the effort. Here, the efficiency is 60% or 0.60 as a decimal.
The formula to calculate the **Effort** is derived from the relationship between these factors:
\[ \text{Efficiency} = \frac{\text{Mechanical Advantage (MA)}}{\text{Velocity Ratio (VR)}} \]
Where:
\[ \text{Mechanical Advantage (MA)} = \frac{\text{Load}}{\text{Effort}} \]
From the above, we have:
\[ \text{MA} = \text{VR} \times \text{Efficiency} \]
Replacing with the given values:
\[ MA = 2 \times 0.60 = 1.2 \]
Now, calculate the **Effort** using the relation:
\[ \text{Effort} = \frac{\text{Load}}{\text{MA}} \]
\[ \text{Effort} = \frac{300N}{1.2} = 250N \]
Therefore, the **Effort** needed to lift the load is 250N.
Question 9 Rapport
A cell of internal resistance of 2Ω supplies current through a resistor, X if the efficiency of the cell is 75%, find the value of X.
Détails de la réponse
To solve the problem, let's first understand the concept of efficiency in this context. Efficiency refers to the ratio of the useful power output to the total power output of a system. In simpler terms, it tells us how much of the power provided by the cell is being effectively used by the resistor, X.
Given that the cell has an internal resistance (r) of 2Ω and we need the efficiency to be 75%, we will follow these steps:
Efficiency (%) = (R / (R + r)) * 100
Where:
According to the problem, efficiency is 75%, so:
(X / (X + 2)) * 100 = 75
First, let’s eliminate the percentage by dividing both sides by 100:
(X / (X + 2)) = 0.75
Now, let's solve for X:
X = 0.75 * (X + 2)
X = 0.75X + 1.5
0.25X = 1.5
X = 1.5 / 0.25
X = 6 Ω
Hence, for the cell to have an efficiency of 75%, the value of the resistor X must be 6Ω.
Question 10 Rapport
The dimension of young's modulus,E is given by
Détails de la réponse
Young's modulus, denoted by E, is a measure of the stiffness of a solid material. It is defined as the ratio of stress to strain in a material that is behaving elastically. Stress is the force applied per unit area, and strain is the deformation experienced by the material in response to the applied stress.
Let's break down the dimensions for Young's modulus:
Stress: Stress is defined as force per unit area. Thus, the dimension of stress can be expressed as:
Stress = Force / Area
The dimension of force is given by mass × acceleration, i.e., Force = MLT-2 (where M is mass, L is length, and T is time).
The dimension of area is length × length = L2.
Therefore, the dimension of stress is:
Stress = (MLT-2) / (L2) = ML-1T-2
Strain: Strain is the ratio of the change in length to the original length and is dimensionless because it is a ratio of two lengths.
Thus, the dimension of strain is simply 1 (dimensionless).
Since Young's modulus is the ratio of stress to strain, its dimension is the same as that of stress. Therefore, the dimension of Young’s modulus E is:
ML-1T-2
Question 11 Rapport
The energy stored in the above capacitor is
Détails de la réponse
The energy stored in the capacitor = 12 q2C
Where C = 2F, q = 3C
= 12 322 = 94 = 2.25J
Question 12 Rapport
A mass of gas at 40mmHg is heated from 298k to 348k at constant volume. Cal the pressure exerted by the gas.
Détails de la réponse
To determine the new pressure exerted by the gas when it is heated, we'll apply **Gay-Lussac's Law**. This law states that at constant volume, the pressure of a given amount of gas is directly proportional to its absolute temperature. Mathematically, it can be expressed as:
P1/T1 = P2/T2
Where:
By rearranging the formula to solve for the final pressure (P2), we get:
P2 = P1 * (T2/T1)
Now, insert the given values into the equation:
P2 = 40 mmHg * (348 K / 298 K)
Perform the calculations:
P2 = 40 mmHg * (348 / 298)
P2 = 40 mmHg * 1.1678
P2 = 46.71 mmHg
So, the new pressure exerted by the gas when it is heated from 298 K to 348 K at constant volume is 46.71 mmHg.
Question 13 Rapport
An effort of 40N is applied on a machine to lift a mass of 60kg. Determine the mechanical advantage of the machine [ g = 10ms2 ]
Détails de la réponse
To determine the Mechanical Advantage (MA) of a machine, we use the formula:
MA = Load / Effort
Here, the Load is the weight of the mass being lifted, and the Effort is the force applied on the machine.
First, we need to calculate the Load. The Load is obtained by multiplying the mass of the object by the acceleration due to gravity (g = 10 m/s2).
So, the Load (weight of the mass) is:
Load = Mass × Gravity = 60 kg × 10 m/s2 = 600 N
The Effort given is 40 N.
Now, we can calculate the Mechanical Advantage:
MA = Load / Effort = 600 N / 40 N = 15
Therefore, the Mechanical Advantage of the machine is 15.
Question 14 Rapport
A thick glass tumbler cracks when boiling water is poured into it because
Détails de la réponse
When boiling water is poured into a thick glass tumbler, the inner surface of the glass is suddenly exposed to a much higher temperature compared to the outer surface. Glass is a poor conductor of heat, which means it does not transfer heat quickly. As a result, the inside of the tumbler becomes hot and attempts to **expand quickly**, while the outside remains cooler and does not expand at the same rate.
**This uneven expansion** creates tension between the inner and outer layers of the glass. The inner surface tries to expand but is constrained by the cooler, rigid outer surface, which isn't expanding as much or as quickly. This stress and tension can lead to cracking.
Therefore, the correct reason a thick glass tumbler cracks when boiling water is poured into it is because **the inside expands more rapidly than the outside.**
Question 15 Rapport
Which of the following is not a part of model rocket?
Détails de la réponse
When it comes to a model rocket, it is crucial to understand the different parts that make up the rocket and their functions:
Now, “Not recovery devices” is listed among the options. A recovery device is actually a part of a model rocket system. Common recovery devices include parachutes or streamers that deploy after the rocket reaches its peak altitude, allowing it to return safely to the ground. Such devices are indeed part of a model rocket design.
Therefore, the option “Not recovery devices” itself is not recognized as a part of a model rocket. Instead, the sentence is stating that they are not part of the main components, which implies it's indicative rather than being the name of a component. Hence, it does not pertain to a single component like the body tube, nose cone, or fins.
Question 16 Rapport
The food nutrient with the highest energy value is
Détails de la réponse
Fat is the food nutrient with the highest energy value, providing 9 calories per gram, while carbohydrates and proteins provide 4 calories per gram.
Fat is the body's most concentrated source of energy, providing more than twice as much potential energy as carbohydrates or proteins.However, carbohydrates burn fastest in metabolism. Fats are a type of lipid. Lipids are a group of organic compounds that are insoluble in water but soluble in organic solvents. Fats are solid at room temperature, while oils are liquid at room temperature.
Therefore, the correct answer is option C.
Question 17 Rapport
Electrolysis can be investigated using
Détails de la réponse
When investigating electrolysis, the most relevant instrument from the list provided is the Voltameter. This is because the voltameter is specifically designed to measure the amount of substance that is deposited or consumed at electrodes during the electrolysis of an electrolyte. It functions based on the chemical change associated with the electric current passing through the electrolyte.
Here is a simple explanation of how electrolysis works and why a voltameter is useful:
Electrolysis is the process of using electricity to cause a chemical reaction, which is usually a decomposition reaction. This involves passing an electric current through an electrolyte (a substance containing free ions). These ions migrate towards electrodes, resulting in chemical changes. The key aspect to measure during electrolysis is the amount of material (e.g., metal or gas) that is deposited at the electrodes.
The Voltameter helps in understanding electrolysis because:
Voltmeter, Ammeter, and Galvanometer are not used primarily for investigating electrolysis:
Question 18 Rapport
5 X 10−3 kg of liquid at its boiling point is evaporated in 20s by the heat generated by a resistor of 2Ω when a current of 10A is used. The specific latent heat of vaporization of the liquid is
Détails de la réponse
To solve this problem, we need to calculate the specific latent heat of vaporization of the liquid. The specific latent heat of vaporization, denoted as \(L\), is defined as the amount of heat required to convert 1 kilogram of a liquid into a gas at constant temperature and pressure. The formula for specific latent heat of vaporization is given by:
L = \(\frac{Q}{m}\)
Where:
First, we need to calculate the total heat energy \(Q\) generated by the resistor. The heat produced by an electrical resistor can be calculated using the formula:
Q = I^2Rt
Where:
Given:
Substituting these values into the formula for Q:
Q = (10^2) * 2 * 20 = 100 * 2 * 20 = 4000 J
Now that we have the total heat energy supplied, let's calculate the specific latent heat of vaporization:
Given that the mass \(m\) of the liquid evaporated is \(5 \times 10^{-3}\) kg, we can substitute the values into the formula for \(L\):
L = \(\frac{4000}{5 \times 10^{-3}} = \frac{4000}{0.005} = 800,000 J/kg\)
Therefore, the specific latent heat of vaporization of the liquid is 8.0 x 105 J/kg.
Question 19 Rapport
Détails de la réponse
To solve this problem, we need to understand the relationship between pressure, volume, and temperature of a gas. The relevant law here is the **Combined Gas Law**, which is expressed as:
(P1 * V1) / T1 = (P2 * V2) / T2
Where:
In the given problem:
Applying the Combined Gas Law:
(P1 * V1) / 300 = (2 * P1 * V2) / 400
Simplifying this equation:
V1/300 = 2V2/400
Multiply both sides by 400 to clear the fraction:
400 * V1 / 300 = 2 * V2
Which further simplifies to:
(4/3) * V1 = 2 * V2
Dividing both sides by 2:
(2/3) * V1 = V2
This shows that the final volume, V2, is **2/3 of the initial volume, V1**. Therefore, the volume of the gas will **decrease by 1/3**.
Question 20 Rapport
How much joules of heat are given out when a piece of iron, of mass 60g and specific heat capacity 460JKg−1 K−1 , cools from 75ºC to 35ºC
Détails de la réponse
To find out how much heat is given out when the piece of iron cools down, we can use the formula for heat transfer:
Q = mcΔT
Where:
First, let's list the values given and convert the mass from grams to kilograms:
Now, calculate the change in temperature:
ΔT = final temperature - initial temperature = 35ºC - 75ºC = -40ºC
Note: Since we are calculating the heat given out as the iron cools, the temperature change will be negative, which will make Q positive, indicating heat is released.
Substitute these values into the heat transfer formula:
Q = mcΔT = (0.06 kg) x (460 J/Kg·K) x (-40ºC)
Q = 0.06 x 460 x -40
Q = -1104 Joules
Since the question asks for how much heat is given out, we consider the positive value of Q, which is 1104J. Therefore, 1104J of heat is given out when the piece of iron cools from 75ºC to 35ºC.
Question 21 Rapport
Détails de la réponse
To understand when a vapor is considered saturated, it is crucial to consider the rates of two significant processes: evaporation and condensation. **Evaporation** is the process where liquid molecules escape into the vapor phase, and its rate is denoted as **y**. On the other hand, **condensation** is the process where vapor molecules return to the liquid phase, with its rate denoted as **x**.
A vapor is said to be **saturated** when the rate of evaporation of the liquid is equal to the rate of condensation of the vapor. In simpler terms, the number of molecules leaving the liquid to become vapor is exactly equal to the number of molecules returning from the vapor to the liquid.
In mathematical terms, this condition can be described as **x = y**. Under this condition, the system reaches a dynamic equilibrium, and the vapor pressure of the system is at its maximum for the given temperature. At this point, the vapor cannot accommodate any more molecules, and thus, the vapor is in a saturated state.
Question 22 Rapport
Use the diagram above to answer the question that follows
The diagram above is
Détails de la réponse
The diagram in the image represents the urinary system, as indicated by the correct answer. The urinary system includes the kidneys, ureters, bladder, and urethra, which are responsible for filtering blood and excreting waste in the form of urine.
Kidneys – Filter waste and excess fluids from the blood to form urine.
Ureters – Tubes that carry urine from the kidneys to the bladder.
Urinary Bladder – Stores urine before it is expelled from the body.
Urethra – A tube that allows urine to exit the body.
This system plays a crucial role in maintaining the body's fluid balance and removing waste products.
Question 23 Rapport
An air force jet flying with a speed of 335m/s went past an anti-aircraft gun. How far is the aircraft 5s later when the gun was fired?
Détails de la réponse
To solve this problem, we need to determine how far the aircraft travels in the 5 seconds after it passes the anti-aircraft gun. The problem gives us two key pieces of information:
To find the distance traveled, we use the formula for distance:
Distance = Speed × Time
Plugging in the given values:
Distance = 335 m/s × 5 s
Calculating this, we get:
Distance = 1675 meters
This means the aircraft is 1675 meters away from the point where it passed the anti-aircraft gun after 5 seconds.
Question 24 Rapport
Détails de la réponse
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Question 25 Rapport
The property by which a material returns to its original shape after the removal of force is called
Détails de la réponse
The property by which a material returns to its original shape after the removal of force is called Elasticity.
Let's break it down:
Elasticity: This is a property of a material that allows it to return to its original shape or size after the force that caused deformation is removed. Think of a rubber band—you can stretch it, but once you let it go, it snaps back to its initial shape.
Ductility: This property refers to a material's ability to be stretched into a wire. For example, materials like copper are ductile because they can be drawn into thin wires without breaking.
Malleability: This is a material's ability to withstand deformation under compressive stress. It is the property that allows metals to be hammered or rolled into thin sheets. Gold is a good example of a malleable metal.
Plasticity: This property describes the material's ability to undergo permanent deformation without breaking. When a plastic region is reached, the material will not return to its original shape after the removal of force.
Therefore, when we speak of a material returning to its original shape after the removal of force, we are specifically referring to Elasticity.
Question 26 Rapport
The unit of impedance is
Détails de la réponse
The unit of impedance is Ohm, which is symbolized by the Greek letter Ω (Omega). In electrical circuits, impedance (Z) is a measure of opposition that a circuit offers to the passage of electric current when a voltage is applied. It is similar to resistance but extends to alternating currents (AC) and contains the effects of resistance as well as reactance (which accounts for capacitors and inductors).
Just like resistance, the unit of impedance is the ohm because they measure similar concepts; however, impedance also accounts for phase shifts between voltage and current, which are not considered in simple resistance. Ohm's Law is used in AC circuits as Z = V/I, where Z is impedance, V is voltage, and I is current. This relationship shows why the unit of impedance is the same as that of resistance.
Question 27 Rapport
The average translational kinetic energy of gas molecules depends on
Détails de la réponse
The average translational kinetic energy of gas molecules is directly related to the temperature of the gas. This relationship is based on the principles of kinetic molecular theory, which explains the behavior of gas molecules in terms of their motion.
Let's break this down simply:
1. Temperature and Kinetic Energy:
The average translational kinetic energy of gas molecules is given by the equation:
\( KE_{avg} = \frac{3}{2} k_B T \)
where \( KE_{avg} \) is the average translational kinetic energy, \( k_B \) is the Boltzmann constant, and \( T \) is the absolute temperature in Kelvin. This formula shows that the kinetic energy is directly proportional to the temperature.
2. What This Means:
As the temperature of a gas increases, the molecules move faster, which increases their translational kinetic energy. Conversely, as the temperature decreases, the molecules slow down, resulting in lower kinetic energy.
It is important to note that this relation is independent of the pressure and the number of moles of the gas. While pressure and the number of moles do affect the overall behavior of a gas, they do not directly influence the average translational kinetic energy of individual molecules.
Therefore, the correct explanation is that the average translational kinetic energy of gas molecules depends on temperature only.
Question 28 Rapport
A force of 10N extends a spring of natural length 1m by 0.02m, calculate the length of the spring when the applied force is 40N.
Détails de la réponse
To solve this problem, we will use Hooke's Law. Hooke's Law states that the force needed to extend or compress a spring by some distance is proportional to that distance. Mathematically, it is represented as:
F = k * x
where:
Firstly, we need to find the spring constant k. We know that a force of 10N extends the spring by 0.02m. Therefore, using Hooke's Law:
10N = k * 0.02m
From this, we can solve for k:
k = 10N / 0.02m = 500N/m
Now that we have determined the spring constant, let's calculate the extension caused by a force of 40N:
Using Hooke's Law again:
F = k * x
40N = 500N/m * x
Solving for x:
x = 40N / 500N/m = 0.08m
This means that the spring is extended by 0.08m when a force of 40N is applied. Therefore, the length of the spring (natural length plus extension) becomes:
1.00m + 0.08m = 1.08m
Thus, the **length** of the spring when the applied force is 40N is 1.08m.
Question 29 Rapport
An object is placed 25cm in front of a convex mirror has its image formed 5cm behind the mirror. what is the focal length of the convex mirror
Détails de la réponse
Object distance (u) = -25 cm (negative because the object is in front of the mirror)
Image distance (v) = +5 cm (positive because the image is behind the convex mirror)
Using 1f = 1u + 1v
1f = 1−25 + 15
f = 254 = 6.250cm.
Question 30 Rapport
Two tuning forks of frequencies 6Hz and 4Hz respectively are sounded together. The beat frequency is
Détails de la réponse
When two sound waves of slightly different frequencies are sounded together, they interfere with each other in such a way that the intensity of the sound alternates between loud and soft. This phenomenon is known as "beats". The number of beats heard per second is called the "beat frequency".
The beat frequency can be calculated by subtracting the frequency of one wave from the frequency of the other. Mathematically, it is represented as:
Beat Frequency (fbeat) = | f1 - f2 |
Where:
In this case:
Using the formula:
fbeat = | 6Hz - 4Hz | = | 2Hz | = 2Hz
Therefore, the beat frequency is 2Hz. This means that you would hear 2 beats per second when the tuning forks of frequencies 6Hz and 4Hz are sounded together.
Question 31 Rapport
An example of a non-rechargeable cell is
Détails de la réponse
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Question 32 Rapport
The distance between two successive crests of a water wave is 0.25m. If a particle on the surface of the water makes four complete vertical oscillations in one second. Calculate the speed of the wave.
Détails de la réponse
To calculate the speed of the wave, we need to understand some fundamental wave properties: **wavelength**, **frequency**, and **wave speed**.
1. **Wavelength (\( \lambda \))**: The wavelength is the distance between two successive crests of a wave. In this case, the wavelength is given as **0.25 meters**.
2. **Frequency (\( f \))**: Frequency is the number of complete oscillations or cycles that occur per second. It is given that a particle on the surface of the water makes **four complete vertical oscillations in one second**. So, the frequency is **4 Hz (hertz)**.
3. **Wave Speed (\( v \))**: The speed of a wave is calculated using the formula:
\( v = f \times \lambda \)
Where:
\( v \) is the wave speed,
\( f \) is the frequency, and
\( \lambda \) is the wavelength.
Substitute the given values into the formula:
\( v = 4 \text{ Hz} \times 0.25 \text{ m} \)
\( v = 1 \text{ m/s} \)
Therefore, the **speed of the wave** is 1 m/s.
Question 33 Rapport
The land and sea breeze is attributed to
Détails de la réponse
The phenomenon of land and sea breeze is primarily attributed to convection.
To understand this, let's first look at what land and sea breezes are:
Land Breeze: At night, the land cools down faster than the sea. The cooler, denser air from the land moves towards the sea, and this is known as a land breeze.
Sea Breeze: During the day, the land heats up more quickly than the sea. The warmer, lighter air over the land rises, and the cooler air from the sea moves in to take its place. This movement of air from the sea to the land is known as a sea breeze.
Both of these processes involve the movement of air due to differences in temperature and density, which is essentially the process of convection.
Convection is the transfer of heat through a fluid (like air or water) and is responsible for moving air masses and creating these breezes. The warm air, being less dense, rises, and the cooler, denser air moves in to replace it.
In contrast, conduction is the transfer of heat through a solid material, and radiation is the transfer of heat in the form of electromagnetic waves, neither of which primarily drive the processes of these breezes, making convection the key player.
Question 34 Rapport
The device for measuring the angle of dip is
Détails de la réponse
The device used for measuring the angle of dip is the dip circle.
Let me explain this in simple terms:
The angle of dip, also known as the magnetic inclination, is the angle made by the Earth's magnetic field lines with the horizontal plane. It varies depending on where you are on the Earth's surface. In some places, magnetic field lines are nearly vertical, while in others they are more horizontal.
A dip circle is a specialized scientific instrument used to measure this angle. It usually consists of a magnetic needle that is free to rotate in the vertical plane.
When using a dip circle, you align it so that its plane is parallel to the direction of the Earth's magnetic field. Then, you read the angle at which the magnetic needle stabilizes. This is the angle of dip. The instrument's mechanism allows for accurate measurement of this angle by compensating for any external influences or inclinations.
Question 35 Rapport
Calculate the value of electric field intensity due to a charge of 4μC if the force due to the charge is 8N
Détails de la réponse
To calculate the electric field intensity due to a charge, we need to use the formula:
Electric Field Intensity (E) = Force (F) / Charge (q)
In this problem, we are given that the force (F) is 8 Newtons (N) and the charge (q) is 4 microcoulombs (μC). First, we need to convert the charge from microcoulombs to coulombs:
1 microcoulomb (μC) = 1 x 10-6 coulombs (C)
Therefore, 4 μC = 4 x 10-6 C.
Now we can use the formula to find the electric field intensity:
E = F / q
E = 8 N / (4 x 10-6 C)
E = 8 / 4 x 106
E = 2 x 106
Thus, the value of the electric field intensity is 2 x 106 N/C.
Question 36 Rapport
Calculate the quantity of heat for copper rod whose thermal capacity is 400Jk−1 for a temperature change of 60ºC to 80ºC
Détails de la réponse
To calculate the quantity of heat absorbed or released by a substance, we can use the formula:
Q = C × ΔT
where:
Given:
First, calculate the change in temperature:
ΔT = Final temperature - Initial temperature = 80°C - 60°C = 20°C
Now, substitute the values into the formula to find the quantity of heat:
Q = 400 J/°C × 20°C
Calculate the answer:
Q = 8000 J
Since the options provided are in kilojoules (KJ), we need to convert joules (J) to kilojoules (1 KJ = 1000 J):
Q = 8000 J ÷ 1000 = 8 KJ
Therefore, the quantity of heat for the copper rod, given the specified conditions, is 8 KJ.
Question 37 Rapport
The formation of cilia and flagella in living cells is carried out with the help of
Détails de la réponse
The formation of cilia and flagella in living cells is primarily carried out with the help of **centrioles**.
Here's a simple explanation:
Centrioles are cylindrical structures made up of microtubules. They are found in eukaryotic cells and play a critical role in cell division and the organization of the cell's cytoskeleton. However, their role extends beyond this to the formation of the basal bodies which seed the growth of cilia and flagella.
Cilia and flagella are microscopic, hair-like structures that protrude from the surface of certain eukaryotic cells. They are primarily involved in movement. Cilia often work like tiny oars, moving fluid across the cell's surface or propelling single-celled organisms. Flagella are typically longer and move in a whip-like fashion to propel cells, such as sperm cells.
Here's how centrioles contribute to the formation of these structures:
1. **Basal Body Formation**: Each cilium or flagellum grows out from a structure known as a basal body. The basal body is derived from the centrioles. During this process, a centriole migrates to the cell's surface and acts as a nucleation site for the growth of microtubules, which in turn form the structural core of cilia and flagella.
2. **Microtubule Organization**: The centrioles help organize microtubules in a "9+2" arrangement, which is characteristic of cilia and flagella. This refers to nine pairs of microtubules forming a ring around two central microtubules, giving these structures both stability and flexibility for movement.
Thus, centrioles are crucial as they provide the groundwork for the formation and proper functioning of cilia and flagella. They ensure that these structures are assembled correctly and are able to carry out their roles in cell movement and fluid transport.
Question 38 Rapport
The velocity ratio of an inclined plane at 60º to the horizontal is
Détails de la réponse
The concept of an inclined plane is all about simplifying the forces involved in moving or holding a load. The **velocity ratio (VR)** for an inclined plane is defined as the ratio of the distance moved by the effort to the distance moved by the load. This can also be expressed in terms of the lengths involved in the triangle made by the inclined plane.
For an inclined plane placed at an angle **θ** to the horizontal, the velocity ratio is given by the formula:
VR = 1/sin(θ)
Given that the inclined plane is at an angle of **60º**:
First, find the sine of 60º:
sin(60º) = √3/2 (approximately 0.866)
Now, substitute this value into the formula for VR:
VR = 1/sin(60º) ≈ 1/0.866 ≈ 1.155
The **velocity ratio** for an inclined plane at **60º** to the horizontal is **approximately 1.155**.
Question 39 Rapport
The power of a convex lens of focal length 20cm is
Détails de la réponse
The power of a lens is a measure of its ability to converge or diverge light. It is defined as the reciprocal (or inverse) of the focal length of the lens. The formula for calculating the power (P) of a lens in diopters (D) is given by:
P = 1/f
where:
In this case, the focal length given is 20 cm. To apply the formula, we first need to convert this focal length into meters because the diopter is the reciprocal of the focal length in meters:
f = 20 cm = 0.20 m
Now, substitute the focal length in meters into the formula for power:
P = 1 / 0.20
P = 5.00 D
Thus, the power of the convex lens is 5.00 diopters. This indicates that the lens is capable of converging light at a distance of 5.00 meters.
Question 40 Rapport
In a solar panel, solar beam is concentrated by using
Détails de la réponse
In a solar panel system, the type of mirror used to concentrate solar beams is the Concave Mirror.
Explanation:
A concave mirror is a type of mirror that curves inward, like the inside of a bowl. This shape is very effective at focusing light. When sunlight hits a concave mirror, the mirror's shape causes the light beams to converge, or come together, at a single point known as the focus. This concentrated light can then be used to generate heat or electricity more efficiently.
Why not the others?
A convex mirror curves outward and disperses light beams rather than concentrating them.
A plane mirror has a flat surface and reflects light at the same angle it receives it, meaning it doesn't concentrate the beams.
A triangular mirror is not typically used in solar applications for concentrating light as its shape is not conducive to focusing beams effectively.
Therefore, a concave mirror is best suited for concentrating solar beams in solar panel systems.
Souhaitez-vous continuer cette action ?