Chargement....
|
Appuyez et maintenez pour déplacer |
|||
|
Cliquez ici pour fermer |
|||
Question 1 Rapport
Lamps in domestic lightings are usually in
Détails de la réponse
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Question 2 Rapport
The following are some units
I. Ns
II. Non
III. Nm−2
IV. J°K−1
V. JKj−1
What are the units of latent heat?
Détails de la réponse
Latent heat or specific latent heat = L
| Heat | energy | = | mL | or | L | = | Hm | = | energymass |
Question 3 Rapport
A microscope is focused on a mark on a table, when the mark is covered by a plate of glass 2m thick, the microscope has to be raised 0.67cm for the mark to be once more in focus. Calculate the refractive index.
Détails de la réponse
R = th = 2cm, d = 0.67cm
| n | = | RA | = | RR.d | = | 22-0.67 | = | 1.52 |
Question 4 Rapport
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Détails de la réponse
Depth of sea can be measured by echo, a reflected sound waves.
Question 5 Rapport
The distance between an object and its real image in a convex lens is 40cm. If the magnification of the image is 3, calculate the focal length of the lens
Détails de la réponse
u + v = 40
vu = 3
v = 3u
u + 3u = 40
4u = 40
u = 10cm
v = 3u = 30cm
f = uvu+v=10(30)10+30=30040
= 7.5 cm
Question 6 Rapport
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Détails de la réponse
| v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
| v | = | 2 × 4x | = | 8 | ms |
Question 7 Rapport
Which of the following is consistent with Charles' law?
I
II
III
IV.
Détails de la réponse
This is the correct graph. The graph is volume against 1/ temperature where temperature is in Celsius.
Question 8 Rapport
In the molecular explanation of conduction, heat is transferred by the
Détails de la réponse
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Question 9 Rapport
Which of the following media allow the transmission of sound waves through them?
I. air
II. liquid
III. solids
Détails de la réponse
Sound waves are disturbances in a medium that propagate through the medium and transfer energy from one point to another. The transmission of sound waves depends on the physical properties of the medium, including its elasticity and density. Air (Option I) is a gas that is compressible and has a relatively low density, which makes it an excellent medium for transmitting sound waves. Liquids (Option II) are also able to transmit sound waves, although the speed of sound in liquids is slower than in gases because liquids are more dense and less compressible. Solids (Option III) are able to transmit sound waves as well, but their density and elasticity make them more rigid, which means that sound waves in solids tend to be transmitted as elastic waves or mechanical waves, rather than as acoustic waves. Therefore, the correct answer is "I, II, and III".
Question 10 Rapport
A boy pushes a 500kg box along a floor with a force of 2000N. If the velocity of the box is uniform, the co-efficient of friction between the box and the floor is
Détails de la réponse
The coefficient of friction is a measure of the amount of friction between two surfaces. It is represented by the symbol "μ" and is a dimensionless quantity. The coefficient of friction between two surfaces depends on the nature of the surfaces in contact and the force pressing them together. In this problem, the boy is pushing the box with a force of 2000N. If the box is moving with a uniform velocity, then the force of friction acting on the box is equal and opposite to the pushing force applied by the boy. We can calculate the force of friction using the formula: frictional force = coefficient of friction x normal force where the normal force is the force exerted by the floor on the box in a direction perpendicular to the floor. Since the box is not moving up or down, the normal force is equal to the weight of the box. The weight of the box can be calculated using the formula: weight = mass x gravity where mass is the mass of the box and gravity is the acceleration due to gravity (9.8 m/s^2). So, the weight of the box is: weight = 500 kg x 9.8 m/s^2 = 4900 N The force of friction is equal to the pushing force of 2000N, so we can set these two equal to each other and solve for the coefficient of friction: frictional force = 2000N coefficient of friction x normal force = 2000N coefficient of friction x 4900N = 2000N coefficient of friction = 2000N / 4900N = 0.408 So, the coefficient of friction between the box and the floor is approximately 0.4. Therefore, the correct answer is 0.4.
Question 11 Rapport
A vibrator causes water ripples to travel across the surface of a tank. The wave travels 50cm in 2s and the distance between successive crests is 5cm. Calculate the frequency of the vibrator
Détails de la réponse
The frequency of the vibrator can be calculated using the formula: frequency = speed / wavelength where speed is the speed of the wave, and wavelength is the distance between successive crests. In this case, we are given that the wave travels 50cm in 2s, which means the speed of the wave is: speed = distance / time = 50cm / 2s = 25cm/s We are also given that the distance between successive crests is 5cm, which is the wavelength. Therefore, the frequency of the vibrator is: frequency = speed / wavelength = 25cm/s / 5cm = 5Hz So the correct answer is 5Hz.
Question 12 Rapport
The conductivity of gases at low pressure can be termed as
I. hot cathode emission
II. thermo ionic emission
III. cold cathode emission
IV. Field emission
Détails de la réponse
As conduction of gases is at low pressure and high voltage, called field or cold cathode emission.
Question 13 Rapport
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce temperature increase because
Détails de la réponse
When a solid is heated to its melting point, the heat supplied is used to overcome the intermolecular forces holding the molecules in a fixed position, resulting in the breaking of these bonds. As a result, the solid transforms into a liquid without any change in temperature. This is because the heat energy supplied is used in breaking the bonds between molecules rather than increasing the kinetic energy of the molecules, which is what causes an increase in temperature. Therefore, the correct option is: "all the heat is used to break the bonds holding the molecules of the solid together."
Question 14 Rapport
Which of the following bodies, each with centre of gravity G, lying on a horizontal table, is/are in unstable equilibrium?
Détails de la réponse
- I and II are in neutral equilibrium. They will roll continuously on the table
- III is a body with high centre of gravity (unstable)
- IV is a body with high centre of gravity (stable)
Question 15 Rapport
A rectangular solid black has length 10cm, breadth 5cm and height 2cm. If it lies on a horizontal surface, and has density 100kg/m3 , calculate the pressure it exerts on the surface.
Détails de la réponse
To calculate the pressure that the rectangular solid exerts on the surface, we need to use the formula for pressure: Pressure = Force / Area In this case, the force is the weight of the rectangular solid, which we can calculate using the formula: Weight = Mass x Gravity The mass of the rectangular solid can be calculated using its density and volume: Mass = Density x Volume The volume of the rectangular solid is simply its length x breadth x height: Volume = Length x Breadth x Height = 10 cm x 5 cm x 2 cm = 100 cm3 We need to convert this volume to cubic meters to use the density given in kg/m3: Volume = 100 cm3 = 0.0001 m3 Now we can calculate the mass: Mass = Density x Volume = 100 kg/m3 x 0.0001 m3 = 0.01 kg The gravity is the acceleration due to gravity, which we can assume to be 9.81 m/s2. Therefore, the weight is: Weight = Mass x Gravity = 0.01 kg x 9.81 m/s2 = 0.0981 N Now we can use this weight to calculate the pressure on the surface. The surface area in contact with the rectangular solid is simply its length x breadth: Area = Length x Breadth = 10 cm x 5 cm = 50 cm2 We need to convert this area to square meters: Area = 50 cm2 = 0.005 m2 Therefore, the pressure is: Pressure = Force / Area = 0.0981 N / 0.005 m2 = 19.62 N/m2 We can convert this to units of N/cm2 or N/mm2 if desired. This is equivalent to: Pressure = 0.1962 N/cm2 = 0.0001962 N/mm2 So the pressure that the rectangular solid exerts on the surface is 19.62 N/m2, which is approximately 20 N/m2. Therefore, the answer is 200 N/m2.
Question 16 Rapport
A mass of 0.5kg is whirled in a vertical circle of radius 2m at a steady rate of 2 rev/s. Calculate the centripetal force
Détails de la réponse
The centripetal force is the force that acts towards the center and keeps an object moving in a circular path. To calculate the centripetal force, we can use the following formula: f = m * v^2 / r where: - f = centripetal force - m = mass of the object (0.5 kg) - v = velocity of the object (2 rev/s * 2 * pi m/rev = 12.57 m/s) - r = radius of the circle (2 m) Plugging in the values, we get: f = 0.5 kg * 12.57 m/s^2 / 2 m f = 31.43 N Rounding to the nearest whole number, the centripetal force is 31 N. So, the closest answer from the options is 160N.
Question 17 Rapport
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Détails de la réponse
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be rectilinear. When an object moves with constant speed, it means that it covers the same distance in equal time intervals. On the other hand, acceleration is the rate of change of velocity with time. If an object undergoes acceleration, its velocity changes with time. Therefore, if a body moves with constant speed and undergoes an acceleration, it means that its direction of motion changes while it covers equal distances in equal time intervals. This type of motion is called rectilinear motion, where the object moves in a straight line, but its velocity changes due to the acceleration. In contrast, circular motion is when an object moves in a circular path with a constant speed, while oscillatory motion is when an object moves back and forth around a fixed point. Rotational motion is when an object rotates around an axis. None of these descriptions fit the scenario of a body moving with constant speed and undergoing acceleration, so the answer is rectilinear motion.
Question 18 Rapport
The limiting frictional force between two surfaces depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surfaces
Détails de la réponse
- Friction depends on the nature of the surfaces in contact
- Solid friction is independent of the area of the surfaces in contact and the relative velocity between the surfaces.
Question 19 Rapport
Three resistors with resistance 200Ω, 500Ω and 1kΩ are connected in series. A 6v battery is connected to either end of the combination. Calculate the potential difference between the ends of 200Ω resistance.
Détails de la réponse
To calculate the potential difference between the ends of the 200Ω resistance, we need to use Ohm's Law, which states that the potential difference (V) across a resistor is equal to the current (I) flowing through the resistor multiplied by the resistance (R) of the resistor. First, we need to find the total resistance of the series combination of resistors. We add up the individual resistances: Total resistance = 200Ω + 500Ω + 1kΩ = 1.7kΩ Next, we can use Ohm's Law to find the current flowing through the circuit. We know that the battery voltage is 6V, and the total resistance is 1.7kΩ: I = V / R = 6V / 1.7kΩ = 0.0035A Now we can use Ohm's Law again to find the potential difference across the 200Ω resistor: V = IR = 0.0035A * 200Ω = 0.7V Therefore, the potential difference between the ends of the 200Ω resistance is 0.7V. The correct answer is option B.
Question 20 Rapport
Which of the following statements are correct of the production and propagation of waves?
I. vibration produces waves
II. waves transmit energy along the medium
III. the medium through which the wave travels does not travel with the wave
IV. waves do not require any medium for transmission
Détails de la réponse
The correct statement is: I and II and III only. Explanation: - Statement I is correct because the production of waves involves some kind of disturbance that creates a vibration in the medium, which then propagates as a wave. - Statement II is correct because waves carry energy along the medium as they propagate. This is why waves can be used to transmit information or power over long distances. - Statement III is correct because the medium through which a wave travels does not move with the wave. Instead, the wave passes through the medium, causing it to oscillate or vibrate, but not to move along with the wave. - Statement IV is incorrect because most waves require a medium through which to propagate. For example, sound waves require air, water waves require water, and seismic waves require the Earth's crust. There are some types of waves, such as electromagnetic waves, that can propagate through a vacuum, but this is not true for all waves.
Question 21 Rapport
Which of the following readings cannot be determined with a meter rule?
Détails de la réponse
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Question 22 Rapport
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Détails de la réponse
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Question 23 Rapport
A metal rod has a length of 100cm at 200oC . At what temperature will its length be 99.4cm. If the linear expansivity of the material of the rod is 2 × 10−5C−1
Détails de la réponse
The linear expansivity of a material describes how its length changes with temperature. If the linear expansivity is given as 2 × 10^-5/°C, this means that for every 1°C change in temperature, the length of the material will change by 2 × 10^-5 times its original length. Given that the rod has a length of 100 cm at 200°C, we can use this information to find its length at a different temperature. If we let L be the length of the rod at temperature T, we can write the relationship as follows: L = 100 cm * (1 + 2 × 10^-5 * (T - 200°C)) To find the temperature at which the rod will have a length of 99.4 cm, we can set L equal to 99.4 cm and solve for T: 99.4 cm = 100 cm * (1 + 2 × 10^-5 * (T - 200°C)) 99.4 cm / 100 cm = 1 + 2 × 10^-5 * (T - 200°C) 0.994 = 1 + 2 × 10^-5 * (T - 200°C) -0.006 = 2 × 10^-5 * (T - 200°C) -0.006 / 2 × 10^-5 = T - 200°C -0.006 / (2 × 10^-5) = T - 200°C -0.006 / (2 × 10^-5) + 200°C = T So the temperature at which the rod will have a length of 99.4 cm is approximately equal to -0.006 / (2 × 10^-5) + 200°C, or -100°C. Therefore, the answer is -100°C.
Question 24 Rapport
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because
Détails de la réponse
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because all the heat is used to break the bonds holding the molecules of the solid together
Question 25 Rapport
Water and Kerosine are drawn respectively into the two limbs of a Hare's apparatus. The destiny of water is 1.0gcm−3 and the density of kerosine is 0.80gcm−3 . If the height of the water column is 20.0cm, calculate the height of the kerosine column.
Détails de la réponse
Devices with different liquids
d1
h1
= d2
h2
1 × 20 = 0.8 × h
| h | = | 200.8 | = | 25cm |
Question 26 Rapport
A copper rod, 5m long when heated through 20c, expands by 1mm. If a second copper rod, 2.5m long is heated through 5c, by how much will it expand?
Détails de la réponse
l1
= 5m, ΔT = 10c, l2
- l1
= 1mm
l1
= 2.5m, ΔT = 5c, l2
- l1
= ?
| using | α | = | l2 - l1 l1 ΔT |
| 15(10) | = | l2 - l1 2.5(5) |
| l2 | - | l2 | = | 2.5(5)5(10) | = | 14 | = | 0.25mm |
Question 27 Rapport
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Détails de la réponse
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Question 28 Rapport
A car moving at 20m/s with its horn blowing (f = 1200Hz) is chasing another car going at 15m/s. What is the apparent frequency of the horn as heard by the driver being chased?
Détails de la réponse
| f1 | = | f(v - vo )v - vs | = | 1200(340 - 15)340 - 20 | = | 1.22KHz |
Question 29 Rapport
One newton × One meter equals?
Détails de la réponse
One newton times one meter is equal to one Joule. A newton is the unit of measurement for force, and a meter is the unit of measurement for distance. When force is applied over a distance, work is done, which is measured in Joules. Therefore, one newton multiplied by one meter results in one Joule of work done. The other options listed (one water, one ampere, one kilogram) are not correct units of measurement for this calculation.
Question 30 Rapport
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Détails de la réponse
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
| P1 V1 T1 | = | P2 V2 T1 |
| V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Question 31 Rapport
Electrons were discovered by
Détails de la réponse
Electrons were discovered by J.J. Thompson. In the late 19th century, he performed a series of experiments using cathode ray tubes, which are glass tubes containing low-pressure gas and electrodes. By applying high voltage, he observed a beam of negatively charged particles traveling from the negative electrode to the positive electrode. He concluded that these particles, which he called "corpuscles," were fundamental units of negative charge and later were renamed electrons. This discovery led to the development of the modern understanding of atomic structure and the electron's role in it.
Question 32 Rapport
A thermocouple thermometer is connected to a millivoltmeter which can read up to 10mV. When one junction is in ice at 0°C and the other is steam at 100°C, the millivoltmeter reads 4mV. What is the maximum temperature which this arrangement can measure
Détails de la réponse
The maximum temperature which this arrangement can measure is 250°C. A thermocouple thermometer works by using the thermoelectric effect, which is the phenomenon that occurs when two dissimilar metals are joined together to form a loop and a temperature difference is established between the two junctions. This temperature difference generates a small electrical voltage, which can be measured using a millivoltmeter. The voltage generated is proportional to the temperature difference between the two junctions. In the case of the thermocouple thermometer described, one junction is in ice at 0°C and the other is steam at 100°C, and the millivoltmeter reads 4mV. This means that the voltage generated by the thermocouple is 4 millivolts, which corresponds to a temperature difference of 100°C. However, the millivoltmeter can only read up to 10mV, so the maximum temperature difference it can measure is 10mV / 4mV/°C = 250°C. This means that the maximum temperature which this arrangement can measure is 250°C.
Question 33 Rapport
Ripple in a power supply unit is caused by
Détails de la réponse
The correct option is "Using a zener diode" as fluctuation of d.c signal results from the rectification of a.c to d.c.
Question 34 Rapport
If the time of flight is 96seconds, calculate the horizontal range through the point of projection.
Détails de la réponse
Time of flight, T = 96s
R = (Ucosθ) *time* T = 640 × 96 = 61,440m
Question 35 Rapport
The pin-hole camera produces a less sharply defined image when the
Détails de la réponse
The pin-hole camera produces a less sharply defined image when the pin-hole is larger. A pin-hole camera works by allowing light to pass through a small hole (the pin-hole) and project an inverted image of the outside world onto a screen or surface located behind the hole. The smaller the pin-hole, the sharper the resulting image, as light passing through a smaller hole produces less diffraction or spreading out of the light. When the pin-hole is larger, more light enters the camera, but the light rays also become more scattered, resulting in a less well-defined image. This is because the larger opening allows more light rays to enter at different angles, creating a wider range of paths that the light can take as it travels through the camera and onto the screen. As a result, the image is less clear and less defined, with less sharp edges and more blurring. is the correct answer because it correctly identifies the effect of a larger pin-hole on the image produced by the pin-hole camera. less illumination, would actually produce a dimmer image, but it would not affect the sharpness or definition of the image. the distance of the screen from the pin-hole, and the distance of the object from the pin-hole, would affect the size of the image and the scale of the objects, but they would not affect the sharpness or definition of the image.
Question 36 Rapport
A body was slightly displaced from its equilibrium position. Which one of the following is a condition for its stable equilibrium
Détails de la réponse
The condition for stable equilibrium of a body that has been slightly displaced from its equilibrium position is "an increase in the potential energy of the body." When an object is at its equilibrium position, it has a minimum potential energy. When the object is displaced from its equilibrium position, it has a higher potential energy. For the object to be in stable equilibrium, it must be able to return to its equilibrium position after it has been displaced. If the potential energy of the object increases as it is displaced, it means that the equilibrium position is a point of stable equilibrium. This is because the object will experience a restoring force that will push it back towards its equilibrium position, as the potential energy decreases. Therefore, an increase in potential energy is a condition for a body to be in stable equilibrium after it has been slightly displaced from its equilibrium position. An increase in kinetic energy or height does not necessarily indicate stability, as it depends on the specific situation and other factors at play.
Question 37 Rapport
The value of T in the figure above is
Détails de la réponse
Tsin30 + Tsin30 =40
2Tsin30 = 40
Tsin30 = 40/2 = 20
T(12 ) = 20
T = 20 x 2 = 40N
Question 38 Rapport
The height at which the atmosphere cases to exist is about 80km. If the atmospheric pressure on the ground level is 760mmHg, the pressure at a height of 20km above the ground level is
(ρm = 13.6g/cm3 ρ = 0.00013g/cm3 )
Détails de la réponse
ρm
hm
= ρa
ha
13.68(760 - p) × 10−3
= 13 × 10−5
(20 × 103
)
| 760 | - | p | = | 13 × 10−5 × 20 × 103 13.68 × 10−3 | = | 19.00 | × | 101 |
760 - p = 190
p = 760 - 190 = 570mmHg
Question 39 Rapport
Aluminium is sometimes used as the leaf of an electroscope because it
Détails de la réponse
- Aluminium can be made in thin sheet like Gold.
- the leaf is a thin material that can be diverged easily.
Question 40 Rapport
An a.c of 1A at a frequency of 800 cycles per second flows through a coil, the inductance of which is 2.5mH and the resistance of which is 5Ω. What is the power absorbed in the Coil?
Détails de la réponse
I = 1A, F = 800 cycles/s = 800Hz
R = 5Ω, L = 2.5mH
P = I2
R = I2
× 5 = 5W
Souhaitez-vous continuer cette action ?