Chargement....
|
Appuyez et maintenez pour déplacer |
|||
|
Cliquez ici pour fermer |
|||
Question 1 Rapport
According to Charles' law, the volume of a gas becomes zero at
Détails de la réponse
Charles' law states that the volume of a gas is directly proportional to its temperature, provided that the pressure remains constant. This means that as the temperature of a gas increases, its volume also increases. However, it is important to note that this law only applies to ideal gases, which are theoretical gases that perfectly follow the laws of thermodynamics. According to Charles' law, the volume of a gas becomes zero at absolute zero, which is approximately -273°C. At this temperature, the gas particles would have no kinetic energy and would be in their lowest energy state. The volume of a real gas would not actually become zero at absolute zero because the gas particles would have some residual intermolecular interactions that would prevent them from completely collapsing to a single point.
Question 2 Rapport
In electrovalency, the oxidation number of the participating metal is always
Détails de la réponse
Question 3 Rapport
The choice of method for extracting a metal from its ores depends on the
Détails de la réponse
The choice of method for extracting a metal from its ores depends on the position of the metal in the electrochemical series. The electrochemical series is a list of metals arranged in order of their ability to gain or lose electrons. The metals at the top of the series (such as sodium and potassium) are very reactive and will readily lose electrons, while those at the bottom (such as gold and platinum) are less reactive and less likely to lose electrons. The position of a metal in the electrochemical series determines the method of extraction that should be used. For example, metals at the top of the series are usually extracted by electrolysis, which involves passing an electric current through a molten compound of the metal. This process is necessary because the metals at the top of the series are very reactive and are strongly bonded to other elements in their ores. On the other hand, metals at the bottom of the series are usually extracted by reduction with carbon or hydrogen. This is because these metals are less reactive and can be separated from their ores by reacting them with a reducing agent that can take away the oxygen and other impurities. Therefore, the position of the metal in the electrochemical series is a crucial factor in determining the method of extraction that should be used to extract it from its ores.
Question 4 Rapport
If the molecular mass of tetraoxosulphate (VI) acid is 98, calculate its vapour density
Détails de la réponse
Question 5 Rapport
The collision theory explains reaction rates in terms of
Détails de la réponse
The collision theory explains reaction rates in terms of the frequency of collision of the reactants. In other words, the theory suggests that for a chemical reaction to occur, the reactant particles must collide with sufficient energy and with the correct orientation. The frequency of these collisions is an important factor in determining the rate of the reaction. The more frequently the reactant particles collide, the more likely it is that they will react and form products. Therefore, increasing the frequency of collisions between reactant particles can increase the rate of a chemical reaction. The size of the reactants or the products does not play a significant role in the collision theory.
Question 6 Rapport
Which of the following metals cannot replace hydrogen from water or steam?
Détails de la réponse
Question 7 Rapport
Diamond is a bad conductor of electricity because its bonding electrons are used in
Détails de la réponse
Diamond is a bad conductor of electricity because of its unique structure and bonding. The carbon atoms in diamond form a covalent network, where each carbon atom is bonded to four other carbon atoms. These bonds are strong and hold the atoms in a rigid three-dimensional structure called a crystal lattice. In a covalent bond, atoms share electrons to form a stable compound. In diamond, each carbon atom shares its valence electrons with four neighboring carbon atoms, forming a very strong covalent bond. All the valence electrons in the crystal lattice are used in covalent bond formation, which means there are no free or mobile electrons to carry an electric current. In other words, the electrons are tightly held in the covalent bonds, making it difficult for them to move around the crystal lattice and conduct electricity. In contrast, metals conduct electricity well because they have delocalized or free electrons that can move through the lattice of positively charged ions. So, diamond, being a covalent network solid, does not have free electrons that can carry an electric current, which is why it is a bad conductor of electricity.
Question 8 Rapport
2SO2 (g) + O2 (g) ↔ 2SO3 (g) ΔH = -395.7kJmol−1
In the equation, an increase in temperature will shift the equilibrium position to the
Détails de la réponse
Question 9 Rapport
Sieving is a technique used to separate mixtures containing solid particles of
Détails de la réponse
Sieving is a technique used to separate mixtures containing solid particles of different sizes. A sieve is a mesh or perforated screen that is used to separate particles based on their size. The mixture is poured onto the sieve, and the particles that are too large to pass through the holes are left on top, while the smaller particles fall through the holes and are collected below. This process allows for the separation of the different-sized particles, making it easier to purify or further process the mixture.
Question 10 Rapport
Which of the following pairs of substances will react further with oxygen to form a higher oxide?
Détails de la réponse
Question 11 Rapport
ME + nF -----> pG + qH
In the equation shown, the equilibrium constant is given by?
Détails de la réponse
The equilibrium constant for a chemical reaction is a measure of the balance between the reactants and products of a reaction at a particular temperature. The equilibrium constant is given by the ratio of the product of the concentration of the products raised to their stoichiometric coefficients, to the product of the concentration of the reactants raised to their stoichiometric coefficients. In the equation ME + nF -> pG + qH, the correct expression for the equilibrium constant is [G]^p * [H]^q / [E]^m * [F]^n, represented by.
Question 12 Rapport
The number of electrons in the valence shell of an element of atomic number 14 is?
Détails de la réponse
The number of electrons in the valence shell of an element can be determined by using the periodic table and the electron configuration of the element. The valence shell is the outermost shell that contains electrons that are involved in chemical reactions. For an element with atomic number 14, which is silicon, the electron configuration is 1s2 2s2 2p6 3s2 3p2. The valence shell of silicon is the third shell, which contains 3s2 and 3p2 electrons. Therefore, the number of electrons in the valence shell of silicon is 4 electrons.
Question 13 Rapport
Which of the following produces relatively few ions in solution?
Détails de la réponse
The correct answer is AI(OH)3. When ionic compounds dissolve in water, they dissociate into their constituent ions, producing charged particles in solution. The more ions a compound produces, the more conductive it is in solution. AI(OH)3, also known as aluminum hydroxide, produces relatively few ions in solution because it is a weak base. When AI(OH)3 dissolves in water, it releases a small amount of Al3+ and OH- ions. In contrast, NaOH, KOH, and Ca(OH)2 are strong bases that dissociate more completely in water and produce more ions in solution. NaOH and KOH produce one hydroxide ion for every sodium or potassium ion, while Ca(OH)2 produces two hydroxide ions for every calcium ion. Therefore, of the options listed, AI(OH)3 produces relatively few ions in solution.
Question 14 Rapport
Suitable reagents for the laboratory preparation nitrogen are
Détails de la réponse
Question 15 Rapport
Calculate the pH of 0.05 moldm?3 H2 SO4
Détails de la réponse
To solve this problem, we need to use the formula for calculating the pH of a solution, which is: pH = -log[H+] where [H+] is the concentration of hydrogen ions in moles per liter. The given chemical equation is: H2SO4 + 2H2O → 2H3O+ + SO42- From this equation, we can see that one molecule of sulfuric acid (H2SO4) can donate two hydrogen ions (H+) to the solution, which means that the concentration of hydrogen ions is twice the concentration of sulfuric acid. Therefore, the concentration of hydrogen ions in this solution is: [H+] = 2 x 0.05 moldm^-3 = 0.1 moldm^-3 Now we can use the formula for pH: pH = -log[H+] pH = -log(0.1) pH = 1.00 Therefore, the pH of the solution is 1.00.
Question 16 Rapport
The type of bonding in [Cu(NH3 )4 ]2+ is
Détails de la réponse
The type of bonding in [Cu(NH3)4]2+ is coordinate bonding. Coordinate bonding (also known as dative covalent bonding) is a type of covalent bonding where one atom (in this case, the nitrogen atom in NH3) donates a pair of electrons to another atom or ion (in this case, the copper ion Cu2+). The donating atom is called the ligand, and the receiving atom or ion is called the central metal ion. In [Cu(NH3)4]2+, each ammonia molecule (NH3) donates a lone pair of electrons on the nitrogen atom to the copper ion, forming four coordinate bonds between the ligands and the central copper ion. The presence of coordinate bonds is indicated by the use of square brackets around the coordination compound, and the charge on the compound is indicated by the superscript outside the brackets. Therefore, the answer is option A: coordinate.
Question 17 Rapport
What is the concentration of a solution containing 2g of NaOH in 100cm3 of solution? [Na = 23, O =16, H = 1]
Détails de la réponse
The concentration of a solution containing 2g of NaOH in 100cm3 of solution is 0.40 moldm-3. This can be calculated by using the formula: molarity (M) = number of moles of solute / volume of solution (in liters) First, we need to calculate the number of moles of NaOH in the solution. The molar mass of NaOH is (23 + 16 + 1) = 40 g/mol. So, 2g of NaOH is equal to 2/40 = 0.05 moles. Next, we need to convert the volume of the solution from cm3 to liters. 1 cm3 = 0.001 liters, so 100 cm3 = 0.1 liters. Finally, we can calculate the molarity as follows: M = 0.05 moles / 0.1 liters = 0.5 mol/L = 0.50 moldm-3 So, the concentration of the solution is 0.50 moldm-3.
Question 18 Rapport
Which of the compounds is composed of Al, Si, O and H?
Détails de la réponse
The compound composed of Al, Si, O and H is clay. Clay is a type of sedimentary rock that is made up of very small mineral particles, including hydrated aluminum silicates and other minerals such as quartz and feldspar. These minerals are rich in aluminum, silicon, oxygen, and hydrogen, which gives clay its unique chemical composition. Clay is formed through a process of weathering and erosion of rocks containing these minerals over a long period of time. As water and other natural forces break down the rocks, the mineral particles become suspended in water and are eventually deposited in sedimentary layers. Over time, these layers become compacted and cemented together, forming the solid clay deposits we see today. Therefore, the answer is option C: Clay.
Question 19 Rapport
What volume of oxygen will remain after reacting 8cm of hydrogen gas with 20cm of oxygen gas
Détails de la réponse
Question 20 Rapport
An aqueous solution of a metal salt, M. gives a white precipitate with NaOH which dissolves in excess NaOH. With aqueous ammonia, the solution of M also gives a white precipitate which dissolves in excess ammonia Therefore the cation in M is
Détails de la réponse
Question 21 Rapport
On which of the following is the solubility of a gaseous substance dependent?
I. Nature of solvent
II. Nature of solute
III. Temperature
IV. Pressure
Détails de la réponse
Question 22 Rapport
If one of the following oxides is heated with hydrogen or carbon using a bunsen burner. it is not reduced to the metal, Which one is it?
Détails de la réponse
The oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner is magnesium oxide. Magnesium oxide is an ionic compound made up of positively charged magnesium ions and negatively charged oxygen ions. When heated with hydrogen or carbon, the oxygen ions are not easily removed from the compound. This is because the ionic bond between the magnesium and oxygen ions is very strong and requires a lot of energy to break. On the other hand, lead oxide, copper oxide, and tin oxide are all metal oxides and can be reduced to the metal by heating with hydrogen or carbon. This is because they have a weaker bond between the metal and oxygen ions, allowing the oxygen to be removed more easily when heated. In conclusion, magnesium oxide is the oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner.
Question 23 Rapport
When air which contains the gases Oxygen, nitrogen, carbondioxide, water vapour and the rare gases, is passed through alkaline pyrogallol and then over quicklime, the only gases left are;
Détails de la réponse
Question 24 Rapport
The end products of burning a candle in the atmosphere are water and
Détails de la réponse
Question 25 Rapport
How many atoms are present in 6.0g of magnesium? [Mg = 24, N.A = 6.02 x 10 23 mol]
Détails de la réponse
Question 26 Rapport
The ionic radii of metals are usually
Détails de la réponse
The ionic radii of metals are usually smaller than their atomic radii. The size of an atom is determined by the distance between the nucleus and the outermost electrons, which is known as the atomic radius. When a metal atom loses one or more electrons to form a positive ion (or cation), the resulting ion has a smaller size than the original atom. This is because the positive charge of the ion attracts the remaining electrons closer to the nucleus, making the ion smaller in size. So, when a metal forms a cation, its ionic radius is typically smaller than its atomic radius. This is a general trend in the periodic table, although there are some exceptions.
Question 27 Rapport
The solubility of the solids that dissolves in a given solvent with the liberation of heat will
Détails de la réponse
The solubility of solids in a given solvent is the amount of solid that can dissolve in the solvent to form a solution. When a solid dissolves in a solvent, it releases heat. The solubility of the solid in the solvent can be affected by changes in temperature. Generally, when the temperature of a solution increases, the solubility of the solid in the solvent increases as well. This is because the increased heat energy makes it easier for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will increase with an increase in temperature. On the other hand, if the temperature decreases, the solubility of the solid in the solvent decreases. This is because the decreased heat energy makes it harder for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will decrease with a decrease in temperature. In summary, the solubility of solids in a given solvent will generally increase with an increase in temperature and decrease with a decrease in temperature.
Question 28 Rapport
The elements in the periodic table are listed in order of increasing
Détails de la réponse
Question 29 Rapport
An element used in the production of matches is
Détails de la réponse
The element used in the production of matches is sulphur. Matches are small sticks made of wood or cardboard with a chemical mixture at one end. This chemical mixture, called the match head, contains several compounds including sulphur. When the match is struck against a rough surface, the friction generates heat that ignites the sulphur in the match head, causing a flame. This flame then ignites the other compounds in the match head, which in turn ignites the wood or cardboard stick. Sulphur is an important component of the match head because it is highly flammable and burns easily. It also helps to ignite the other compounds in the match head. However, sulphur by itself is not a good fuel, which means that it cannot sustain a flame on its own. Therefore, it needs other combustible materials, such as potassium chlorate or phosphorus, to make the match head burn. Overall, sulphur plays a crucial role in the chemistry of matches and allows us to easily start fires for various purposes.
Question 30 Rapport
To what volume must 300cm3 of 0.60M sodium hydroxide solution be diluted to give a 0.40M solution?
Détails de la réponse
Question 31 Rapport
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment
Détails de la réponse
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment, the litmus will turn red and oxygen gas will be evolved. This is because during electrolysis, the positively charged copper ions (Cu2+) in the copper II sulphate solution are attracted to the negative cathode electrode, where they gain electrons and are reduced to form solid copper. At the same time, the negatively charged sulphate ions (SO42-) are attracted to the positive anode electrode, where they lose electrons and are oxidized to form oxygen gas and water. The litmus added to the anode compartment turns red because of the formation of oxygen gas, which is a highly reactive oxidizing agent that can react with the litmus to cause it to turn red. No hydrogen gas is evolved because hydrogen is produced at the cathode, which is in a separate compartment from the anode where the litmus is added.
Question 32 Rapport
If 1 litre of 2.2M sulphuric acid is poured into a bucket containing 10 litres of water and the resulting solution mixed thoroughly, the resulting sulphuric acid concentration will be
Détails de la réponse
When 1 liter of 2.2M sulphuric acid is added to 10 liters of water, the total volume of the resulting solution is 11 liters. To find the resulting concentration of sulphuric acid, we need to use the equation: M1V1 = M2V2 where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume. We can plug in the values we know: M1 = 2.2M (the initial concentration of the sulphuric acid) V1 = 1L (the initial volume of the sulphuric acid) M2 = ? (the final concentration we're trying to find) V2 = 11L (the final volume of the resulting solution) Solving for M2, we get: M2 = (M1 x V1) / V2 M2 = (2.2M x 1L) / 11L M2 = 0.2M Therefore, the resulting sulphuric acid concentration is 0.2M or 0.2 moles per liter. In summary, when 1 liter of 2.2M sulphuric acid is mixed with 10 liters of water, the resulting sulphuric acid concentration is diluted to 0.2M. This is because the total volume of the resulting solution is greater than the initial volume of the sulphuric acid, which leads to a decrease in concentration.
Question 33 Rapport
A given amount of gas occupies 10.0dm5 at 4atm and 273°C. The number of moles of the gas present is [Molar volume of gas at s.t.p = 22.4dm3
]
Détails de la réponse
The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. We can use this equation to solve for the number of moles of gas present. First, we need to convert the volume from dm5 to dm3, which is the same as liters (L). So, 10.0 dm5 is equal to 10.0/1000 = 0.01 dm3 or 0.01 L. Next, we need to convert the temperature from Celsius to Kelvin by adding 273 to get 546 K. Now we can plug in the values we have into the ideal gas law: 4 atm x 0.01 L = n x 0.0821 L·atm/K·mol x 546 K Simplifying, we get: 0.04 = n x 44.8 Solving for n, we get: n = 0.04/44.8 = 0.00089 mol Finally, we can compare this value to the molar volume of a gas at standard temperature and pressure (STP), which is 22.4 L/mol. To do this, we need to convert the volume of gas we have to STP conditions. Since the temperature is already at STP (273 K), we just need to adjust the pressure. Using the ideal gas law, we can solve for the volume at STP: 1 atm x V = 0.00089 mol x 0.0821 L·atm/K·mol x 273 K Simplifying, we get: V = 0.0224 L or 22.4 dm3 Therefore, the amount of gas present is equal to 0.00089 mol, which is less than 1 mol. So the answer is 0.89 mol.
Question 34 Rapport
3H2(g) + N2 ⇔ 2NH3(g) ; H= -ve
In the reaction above, lowering of temperature will
Détails de la réponse
Question 35 Rapport
In the upper atmosphere, the ultra-violet light breaks off a free chlorine atom from chlorofluorocarbon molecule. The effect of this is that the free chlorine atom will
Détails de la réponse
The free chlorine atom that breaks off from a chlorofluorocarbon molecule will be very reactive and will attack ozone in the upper atmosphere. Ozone is a molecule made up of three oxygen atoms, and when the free chlorine atom reacts with ozone, it breaks the ozone molecule into two separate oxygen molecules. This reaction reduces the amount of ozone in the atmosphere, which is known as ozone depletion. Over time, this can lead to a thinning of the ozone layer, which protects life on Earth from harmful ultraviolet radiation from the sun.
Question 36 Rapport
Beryllium and Aluminium have similar properties because they
Détails de la réponse
Question 37 Rapport
At what temperature is the solubility of potassium trioxonitrate(V ) equal to that of sodium trioxonitrate (V)?
Détails de la réponse
Question 38 Rapport
In the reaction between sodium hydroxide and sulphuric acid solutions, what volume of 0.5 molar sodium hydroxide would exactly neutralise 10cm3 of 1.25 molar sulphuric acid?
Détails de la réponse
Question 39 Rapport
The Consecutive members of an alkane homologous series differ by
Détails de la réponse
The consecutive members of an alkane homologous series differ by a CH2 unit. This means that each successive member of the alkane series has one more CH2 unit than the previous member. For example, consider the simplest alkane, methane (CH4). The next member of the series is ethane (C2H6), which differs from methane by one CH2 unit. The next member after that is propane (C3H8), which differs from ethane by another CH2 unit. This pattern continues for all members of the alkane homologous series. The reason for this is that each carbon atom in the alkane chain must be bonded to four other atoms, which are usually hydrogen atoms. This means that each carbon atom in the chain can only bond to one other carbon atom. Therefore, the length of the alkane chain can only increase by adding CH2 units to the end of the chain. In summary, the consecutive members of an alkane homologous series differ by a CH2 unit because this is the only way to add length to the alkane chain while maintaining the required number of bonds for each carbon atom in the chain.
Souhaitez-vous continuer cette action ?