Chargement....
Appuyez et maintenez pour déplacer |
|||
Cliquez ici pour fermer |
Question 1 Rapport
Which of the following metals cannot replace hydrogen from water or steam?
Détails de la réponse
Question 2 Rapport
Beryllium and Aluminium have similar properties because they
Détails de la réponse
Question 3 Rapport
A substance that is used as a ripening agent for fruits is
Détails de la réponse
The substance that is commonly used as a ripening agent for fruits is ethene. Ethene, also known as ethylene, is a natural plant hormone that is produced by fruits, especially during the ripening process. It is a colorless gas that can be easily synthesized and used as a ripening agent for fruits. When fruits are exposed to ethene, it triggers a series of biochemical reactions that accelerate the natural ripening process. This can help fruits to ripen faster and more uniformly, which is important for commercial purposes where fruits need to be sold quickly. The use of ethene as a ripening agent is regulated by food safety agencies, as excessive exposure to ethene can cause over-ripening and spoilage of fruits. However, when used in appropriate concentrations, ethene is a safe and effective way to promote the ripening of fruits.
Question 5 Rapport
Sieving is a technique used to separate mixtures containing solid particles of
Détails de la réponse
Sieving is a technique used to separate mixtures containing solid particles of different sizes. A sieve is a mesh or perforated screen that is used to separate particles based on their size. The mixture is poured onto the sieve, and the particles that are too large to pass through the holes are left on top, while the smaller particles fall through the holes and are collected below. This process allows for the separation of the different-sized particles, making it easier to purify or further process the mixture.
Question 6 Rapport
An element X forms the following compounds with chlorine; XCl4 , XCl3 , XCl2 . This illustrates the
Détails de la réponse
The element X forming different compounds with chlorine (XCl4, XCl3, and XCl2) illustrates the law of multiple proportions. This law states that when two elements combine to form more than one compound, the ratio of the masses of one element that combine with a fixed mass of the other element is always a whole number ratio. In this case, the ratio of chlorine to X in the different compounds (XCl4, XCl3, and XCl2) is 4:1, 3:1, and 2:1, respectively, which are all whole number ratios.
Question 7 Rapport
The solubility of the solids that dissolves in a given solvent with the liberation of heat will
Détails de la réponse
The solubility of solids in a given solvent is the amount of solid that can dissolve in the solvent to form a solution. When a solid dissolves in a solvent, it releases heat. The solubility of the solid in the solvent can be affected by changes in temperature. Generally, when the temperature of a solution increases, the solubility of the solid in the solvent increases as well. This is because the increased heat energy makes it easier for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will increase with an increase in temperature. On the other hand, if the temperature decreases, the solubility of the solid in the solvent decreases. This is because the decreased heat energy makes it harder for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will decrease with a decrease in temperature. In summary, the solubility of solids in a given solvent will generally increase with an increase in temperature and decrease with a decrease in temperature.
Question 8 Rapport
The radio isotope used in industrial radiography for the rapid checking of faults in welds and casting is?
Détails de la réponse
Question 9 Rapport
Which of the compounds is composed of Al, Si, O and H?
Détails de la réponse
The compound composed of Al, Si, O and H is clay. Clay is a type of sedimentary rock that is made up of very small mineral particles, including hydrated aluminum silicates and other minerals such as quartz and feldspar. These minerals are rich in aluminum, silicon, oxygen, and hydrogen, which gives clay its unique chemical composition. Clay is formed through a process of weathering and erosion of rocks containing these minerals over a long period of time. As water and other natural forces break down the rocks, the mineral particles become suspended in water and are eventually deposited in sedimentary layers. Over time, these layers become compacted and cemented together, forming the solid clay deposits we see today. Therefore, the answer is option C: Clay.
Question 10 Rapport
(I). 3CuO(s) + 2NH3(g) -----> 3Cu(s) + 3H2O(l) + N2(g)
(II). 2NH3(g) + 3Cl2(g) -----> 6HCl(g) + N2(g)
(III). 4NH3(g) + 3O2(g) -----> 6H2O(l) + N2(g)
The reactions represented by the equations above demonstrate the
Détails de la réponse
Question 11 Rapport
The ionic radii of metals are usually
Détails de la réponse
The ionic radii of metals are usually smaller than their atomic radii. The size of an atom is determined by the distance between the nucleus and the outermost electrons, which is known as the atomic radius. When a metal atom loses one or more electrons to form a positive ion (or cation), the resulting ion has a smaller size than the original atom. This is because the positive charge of the ion attracts the remaining electrons closer to the nucleus, making the ion smaller in size. So, when a metal forms a cation, its ionic radius is typically smaller than its atomic radius. This is a general trend in the periodic table, although there are some exceptions.
Question 13 Rapport
A balanced chemical equation obeys the law of
Détails de la réponse
A balanced chemical equation obeys the law of conservation of mass. This means that in a chemical reaction, the total mass of the reactants must be equal to the total mass of the products. In other words, atoms cannot be created or destroyed during a chemical reaction, only rearranged. For example, if we burn a piece of wood, the mass of the ashes and the gases released will be equal to the mass of the original wood. This is because the atoms in the wood (carbon, hydrogen, oxygen, etc.) are rearranged during the burning process to form new molecules, but the total number of atoms remains the same. By balancing a chemical equation, we ensure that the same number and type of atoms are present on both sides of the equation, which satisfies the law of conservation of mass.
Question 14 Rapport
Which of the following is an example of a chemical change?
Détails de la réponse
Question 15 Rapport
If the molecular mass of tetraoxosulphate (VI) acid is 98, calculate its vapour density
Détails de la réponse
Question 16 Rapport
The situation obtained when a perfect gas expands into a vacuum is
Détails de la réponse
Question 17 Rapport
The figure above shows the electrolysis of molten sodium chloride. Z is the
Détails de la réponse
The figure shows the electrolysis of molten sodium chloride. During electrolysis, an electric current is passed through a molten or dissolved ionic compound to separate the ions. The positive ions move towards the negative electrode (cathode) and the negative ions move towards the positive electrode (anode). In the figure, the electrode connected to the positive terminal of the battery is the anode and the electrode connected to the negative terminal is the cathode. At the anode, the negatively charged chloride ions (Cl-) lose electrons and are oxidized to form chlorine gas (Cl2). At the cathode, the positively charged sodium ions (Na+) gain electrons and are reduced to form liquid sodium metal (Na). Therefore, the answer is (a) anode where the Cl- ions are oxidized. Z is the anode in the figure.
Question 18 Rapport
The presence of ammonia gas in a desiccator can exclusively be removed by
Détails de la réponse
Question 19 Rapport
The conductivity of an acid solution depends on the
Détails de la réponse
The conductivity of an acid solution depends on the amount of ions present and their mobilities. When an acid dissolves in water, it forms ions that can carry an electric charge. These ions are what allows the solution to conduct electricity. The more ions there are in the solution, the better it can conduct electricity. However, not all ions have the same mobility or ability to move around in the solution. Ions with a higher mobility can move more easily through the solution, leading to a higher conductivity. Therefore, the conductivity of an acid solution is determined by both the amount of ions present and their mobilities. Other factors such as temperature can also affect conductivity, but the primary factors are the amount and mobility of ions.
Question 20 Rapport
Which of the following produces relatively few ions in solution?
Détails de la réponse
The correct answer is AI(OH)3. When ionic compounds dissolve in water, they dissociate into their constituent ions, producing charged particles in solution. The more ions a compound produces, the more conductive it is in solution. AI(OH)3, also known as aluminum hydroxide, produces relatively few ions in solution because it is a weak base. When AI(OH)3 dissolves in water, it releases a small amount of Al3+ and OH- ions. In contrast, NaOH, KOH, and Ca(OH)2 are strong bases that dissociate more completely in water and produce more ions in solution. NaOH and KOH produce one hydroxide ion for every sodium or potassium ion, while Ca(OH)2 produces two hydroxide ions for every calcium ion. Therefore, of the options listed, AI(OH)3 produces relatively few ions in solution.
Question 21 Rapport
The Consecutive members of an alkane homologous series differ by
Détails de la réponse
The consecutive members of an alkane homologous series differ by a CH2 unit. This means that each successive member of the alkane series has one more CH2 unit than the previous member. For example, consider the simplest alkane, methane (CH4). The next member of the series is ethane (C2H6), which differs from methane by one CH2 unit. The next member after that is propane (C3H8), which differs from ethane by another CH2 unit. This pattern continues for all members of the alkane homologous series. The reason for this is that each carbon atom in the alkane chain must be bonded to four other atoms, which are usually hydrogen atoms. This means that each carbon atom in the chain can only bond to one other carbon atom. Therefore, the length of the alkane chain can only increase by adding CH2 units to the end of the chain. In summary, the consecutive members of an alkane homologous series differ by a CH2 unit because this is the only way to add length to the alkane chain while maintaining the required number of bonds for each carbon atom in the chain.
Question 22 Rapport
Which of the following statements is correct about the periodic table?
Détails de la réponse
Question 23 Rapport
In electrovalency, the oxidation number of the participating metal is always
Détails de la réponse
Question 24 Rapport
The hydrogen ion concentration of a sample of orange juice is 2.0 X 10−11 moldm−3 . What is its pOH ? [log102 = 0.3010]
Détails de la réponse
Question 25 Rapport
The constituent common to duralumin and alnico is
Détails de la réponse
The common constituent found in both duralumin and alnico is aluminum (Al). Duralumin is an alloy made up of aluminum, copper, manganese, and magnesium. It is known for its high strength and light weight, making it useful in various applications such as aerospace and construction. Alnico, on the other hand, is an alloy made of aluminum, nickel, cobalt, iron, and small amounts of other elements. It is used in the production of strong permanent magnets for various applications such as in motors, generators, and loudspeakers. So, even though duralumin and alnico have different properties and uses, they both contain the element aluminum.
Question 26 Rapport
The collision theory explains reaction rates in terms of
Détails de la réponse
The collision theory explains reaction rates in terms of the frequency of collision of the reactants. In other words, the theory suggests that for a chemical reaction to occur, the reactant particles must collide with sufficient energy and with the correct orientation. The frequency of these collisions is an important factor in determining the rate of the reaction. The more frequently the reactant particles collide, the more likely it is that they will react and form products. Therefore, increasing the frequency of collisions between reactant particles can increase the rate of a chemical reaction. The size of the reactants or the products does not play a significant role in the collision theory.
Question 27 Rapport
What is the PH of 0.00 1 moldm3 solution of the sodium hydroxide
Détails de la réponse
Question 28 Rapport
What volume of oxygen will remain after reacting 8cm of hydrogen gas with 20cm of oxygen gas
Détails de la réponse
Question 29 Rapport
The periodic classification is an arrangement of the elements
Détails de la réponse
The periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that lists all the known chemical elements in order of increasing atomic number, arranged in rows and columns according to their electronic structure and chemical properties. The atomic number of an element is the number of protons in the nucleus of an atom of that element. Each element has a unique atomic number, which determines its position in the periodic table. The elements are arranged in rows called periods, and in columns called groups or families. Elements in the same group have similar properties because they have the same number of valence electrons, which are the electrons in the outermost shell of the atom. The periodic table is an incredibly useful tool for chemists because it allows them to predict the properties of elements based on their position in the table. For example, elements in the same group tend to form similar compounds, so if you know the properties of one element in a group, you can often predict the properties of the other elements in that group. In summary, the periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that organizes the elements into rows and columns based on their electronic structure and chemical properties, allowing scientists to make predictions about the behavior of the elements based on their position in the table.
Question 30 Rapport
Which of the following is used to power steam engines?
Détails de la réponse
Coal is the fuel that is typically used to power steam engines. Coal is burned in a furnace to heat water and produce steam, which is then used to power a steam engine. The steam engine converts the energy from the steam into mechanical energy, which can be used to power machines or generate electricity. Coal is a fossil fuel that has been used for centuries as a source of energy, and it played a significant role in the industrial revolution, powering steam engines that were used to drive machines in factories and transport goods and people by train. Today, steam engines are less common as other forms of energy have taken their place, but they remain an important part of our history and technological development.
Question 31 Rapport
Diamond is a bad conductor of electricity because its bonding electrons are used in
Détails de la réponse
Diamond is a bad conductor of electricity because of its unique structure and bonding. The carbon atoms in diamond form a covalent network, where each carbon atom is bonded to four other carbon atoms. These bonds are strong and hold the atoms in a rigid three-dimensional structure called a crystal lattice. In a covalent bond, atoms share electrons to form a stable compound. In diamond, each carbon atom shares its valence electrons with four neighboring carbon atoms, forming a very strong covalent bond. All the valence electrons in the crystal lattice are used in covalent bond formation, which means there are no free or mobile electrons to carry an electric current. In other words, the electrons are tightly held in the covalent bonds, making it difficult for them to move around the crystal lattice and conduct electricity. In contrast, metals conduct electricity well because they have delocalized or free electrons that can move through the lattice of positively charged ions. So, diamond, being a covalent network solid, does not have free electrons that can carry an electric current, which is why it is a bad conductor of electricity.
Question 32 Rapport
A sample of hard water contains some calcium sulphate and calcium hydrogen carbonate. The total hardness may therefore be removed by
Détails de la réponse
Question 33 Rapport
Which of the following pairs of substances will react further with oxygen to form a higher oxide?
Détails de la réponse
Question 34 Rapport
If 1 litre of 2.2M sulphuric acid is poured into a bucket containing 10 litres of water and the resulting solution mixed thoroughly, the resulting sulphuric acid concentration will be
Détails de la réponse
When 1 liter of 2.2M sulphuric acid is added to 10 liters of water, the total volume of the resulting solution is 11 liters. To find the resulting concentration of sulphuric acid, we need to use the equation: M1V1 = M2V2 where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume. We can plug in the values we know: M1 = 2.2M (the initial concentration of the sulphuric acid) V1 = 1L (the initial volume of the sulphuric acid) M2 = ? (the final concentration we're trying to find) V2 = 11L (the final volume of the resulting solution) Solving for M2, we get: M2 = (M1 x V1) / V2 M2 = (2.2M x 1L) / 11L M2 = 0.2M Therefore, the resulting sulphuric acid concentration is 0.2M or 0.2 moles per liter. In summary, when 1 liter of 2.2M sulphuric acid is mixed with 10 liters of water, the resulting sulphuric acid concentration is diluted to 0.2M. This is because the total volume of the resulting solution is greater than the initial volume of the sulphuric acid, which leads to a decrease in concentration.
Question 35 Rapport
Calculate the percentage composition of oxygen in calcium trioxocarbonate(IV) [Ca=40, C=12, O=16]
Détails de la réponse
To calculate the percentage composition of oxygen in calcium trioxocarbonate(IV), we first need to determine the molar mass of the compound. The compound has one calcium atom (Ca), one carbon atom (C), and three oxygen atoms (O). So, the molar mass of calcium trioxocarbonate(IV) can be calculated as follows: Molar mass = (1 × atomic mass of Ca) + (1 × atomic mass of C) + (3 × atomic mass of O) = (1 × 40) + (1 × 12) + (3 × 16) = 40 + 12 + 48 = 100 g/mol Next, we need to determine the mass of oxygen in one mole of calcium trioxocarbonate(IV). The compound has three oxygen atoms, each with an atomic mass of 16 g/mol. Therefore, the total mass of oxygen in one mole of the compound is: Mass of oxygen = 3 × 16 = 48 g/mol Finally, to determine the percentage composition of oxygen in calcium trioxocarbonate(IV), we divide the mass of oxygen by the molar mass of the compound and multiply by 100. Percentage of oxygen = (Mass of oxygen / Molar mass of compound) × 100 = (48 / 100) × 100 = 48% Therefore, the correct answer is 48, which represents the percentage composition of oxygen in calcium trioxocarbonate(IV).
Question 36 Rapport
To what volume must 300cm3 of 0.60M sodium hydroxide solution be diluted to give a 0.40M solution?
Détails de la réponse
Question 37 Rapport
The refreshing and characteristic taste of soda water and other soft drinks is as a result of the presence of
Détails de la réponse
Question 38 Rapport
If one of the following oxides is heated with hydrogen or carbon using a bunsen burner. it is not reduced to the metal, Which one is it?
Détails de la réponse
The oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner is magnesium oxide. Magnesium oxide is an ionic compound made up of positively charged magnesium ions and negatively charged oxygen ions. When heated with hydrogen or carbon, the oxygen ions are not easily removed from the compound. This is because the ionic bond between the magnesium and oxygen ions is very strong and requires a lot of energy to break. On the other hand, lead oxide, copper oxide, and tin oxide are all metal oxides and can be reduced to the metal by heating with hydrogen or carbon. This is because they have a weaker bond between the metal and oxygen ions, allowing the oxygen to be removed more easily when heated. In conclusion, magnesium oxide is the oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner.
Question 40 Rapport
The choice of method for extracting a metal from its ores depends on the
Détails de la réponse
The choice of method for extracting a metal from its ores depends on the position of the metal in the electrochemical series. The electrochemical series is a list of metals arranged in order of their ability to gain or lose electrons. The metals at the top of the series (such as sodium and potassium) are very reactive and will readily lose electrons, while those at the bottom (such as gold and platinum) are less reactive and less likely to lose electrons. The position of a metal in the electrochemical series determines the method of extraction that should be used. For example, metals at the top of the series are usually extracted by electrolysis, which involves passing an electric current through a molten compound of the metal. This process is necessary because the metals at the top of the series are very reactive and are strongly bonded to other elements in their ores. On the other hand, metals at the bottom of the series are usually extracted by reduction with carbon or hydrogen. This is because these metals are less reactive and can be separated from their ores by reacting them with a reducing agent that can take away the oxygen and other impurities. Therefore, the position of the metal in the electrochemical series is a crucial factor in determining the method of extraction that should be used to extract it from its ores.
Souhaitez-vous continuer cette action ?