Cargando....
Mantén pulsado para arrastrar. |
|||
Haz clic aquí para cerrar |
Pregunta 1 Informe
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Detalles de la respuesta
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Pregunta 2 Informe
Inbreeding is highly discouraged in humans because it may
Detalles de la respuesta
Inbreeding is the process where closely related individuals, like cousins or siblings, mate and produce offspring. **This practice is highly discouraged in humans for several reasons, but a significant concern is the potential for an outbreak of hereditary diseases.**
Here’s why inbreeding is problematic:
Therefore, **to promote genetic diversity and reduce the risk of hereditary diseases in offspring, inbreeding is discouraged in human populations**. This way, offspring are less likely to inherit harmful genetic combinations that can lead to health problems.
Pregunta 3 Informe
Calculate the power of an object which moves through a distance of 500cm in 1s on a frictionless surface by a horizontal force of 50N
Detalles de la respuesta
To calculate the power of an object, we need to use the formula for power in terms of work done over time. The formula is:
Power (P) = Work Done (W) / Time (t)
First, let's find the work done on the object. Work done can be calculated using the formula:
Work Done (W) = Force (F) × Distance (d)
Given:
Substituting the values into the formula for work done, we get:
Work Done (W) = 50 N × 5 m = 250 Joules
Next, we consider the time it took for the object to move this distance:
Now, substituting the work done and time into the power formula:
Power (P) = 250 Joules / 1 s = 250 Watts
Thus, the power of the object is 250 Watts.
Pregunta 4 Informe
Mouth part adapted for piercing and sucking is found in
Detalles de la respuesta
The mouthpart adapted for piercing and sucking is found in the mosquito. Mosquitoes have a specialized mouth structure called a proboscis. This proboscis is long and slender, allowing mosquitoes to puncture the skin of their hosts and suck blood. The proboscis is a complex structure that contains several needle-like parts that make the piercing and sucking process efficient and effective.
Pregunta 5 Informe
Find the amount of current required to deposit 0.02kg of metal in a given electrolysis for 120 seconds. [electro chemical equivalent of the metal = 1.3 x 10−7 kgC−1 ]
Detalles de la respuesta
To determine the amount of current required, we need to use Faraday's laws of electrolysis. The first law states that the mass of the substance deposited at an electrode is directly proportional to the quantity of electricity (or charge) that passes through the electrolyte.
Here, we have:
According to Faraday's first law of electrolysis, the mass (\( m \)) can be calculated by the formula:
m = z \times I \times t
Where:
Rearranging the formula to solve for current \( I \):
I = \(\frac{m}{z \times t}\)
Substituting the given values into the formula:
I = \(\frac{0.02 \, \text{kg}}{1.3 \times 10^{-7} \, \text{kg/C} \times 120 \, \text{s}}\)
Calculating the denominator:
I = \(\frac{0.02}{1.56 \times 10^{-5}}\)
Solving for \( I \):
I = 1282.05 \, \text{A}
Thus, the appropriate amount of current required to deposit 0.02 kg of metal in 120 seconds is approximately 1.3 x 103 A.
Pregunta 6 Informe
The charge of magnitude 1.6 x 10 −19 C is placed in a uniform electric field of intensity 1200Vm−1 . Calculate its acceleration, if the mass of the charge is 9.1 x 10−31 kg
Detalles de la respuesta
To calculate the acceleration of a charge in an electric field, we start by determining the force acting on the charge. The force \( F \) experienced by a charge \( q \) in a uniform electric field \( E \) is given by the equation:
F = q * E
We are given:
Substituting these values into the equation for force:
F = 1.6 x 10-19 C * 1200 V/m
This results in:
F = 1.92 x 10-16 N
Next, we use Newton’s second law of motion to find the acceleration \( a \) of the charge. This law is given as:
F = m * a
Rearranging for \( a \), we have:
a = F / m
We know:
Substituting these values in the equation for acceleration:
a = \(\frac{1.92 x 10^{-16} N}{9.1 x 10^{-31} kg}\)
Calculating the above expression gives:
a ≈ 2.11 x 1014 ms-2
Therefore, the acceleration of the charge is approximately 2.11 x 1014 ms-2.
Pregunta 7 Informe
According to kinetic theory of gases, the pressure exerted by the gas on the wall is equal
Detalles de la respuesta
According to the kinetic theory of gases, the pressure exerted by a gas on the walls of its container relates to the behavior and movement of its molecules. To understand how this pressure forms, let's explore the following essential concepts.
Molecules in a gas move rapidly and randomly in all directions. When these molecules collide with the walls of their container, they exert force due to the change in momentum during these collisions. The frequency and force of these collisions contribute directly to the pressure experienced by the container walls.
The **pressure** exerted by the gas can be described in terms of the rate of change of momentum imparted by the walls per second per unit area. This means that pressure is determined by considering how fast and how much the momentum of the gas molecules changes when they bounce off the container's walls, spread over a specific area and over time. In simpler terms, the faster and more frequently molecules hit the walls, and the higher their change in momentum, the greater the pressure is.
This explanation can be directly associated with the statement: "rate of change of momentum imparted by the walls per second per unit area", which accurately describes the concept of pressure in the context of the kinetic theory of gases.
Pregunta 8 Informe
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called
Detalles de la respuesta
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called the friction force.
Let me explain each of the options to clarify why friction force is the correct answer:
In summary, friction force is the force that acts to oppose sliding between surfaces in contact and acts tangentially, making it the correct answer.
Pregunta 9 Informe
If a body in linear motion changes from point P to Q, the motion is
Detalles de la respuesta
When a body moves in a straight line from one point, such as point P, to another point, such as point Q, the motion is called Translational Motion. This kind of motion refers to an object moving along a path in which every part of the object takes the same path as a reference point. This means that if you follow any point on the body, it covers the same amount of distance in the same time frame as any other point.
Let's break down the other options:
In conclusion, since the body is moving from point P to point Q along a straight line, it exhibits Translational Motion.
Pregunta 10 Informe
As per Faraday's laws of electromagnetic induction, an e.m.f is induced in a conductor whenever
Detalles de la respuesta
According to Faraday's laws of electromagnetic induction, an electromotive force (e.m.f) is induced in a conductor whenever it **cuts magnetic flux**. This means that for an e.m.f to be induced, the conductor must move in such a way that it intersects the magnetic lines of force. It is the relative motion between the conductor and the magnetic field that leads to the change in magnetic flux, resulting in the induction of e.m.f.
Let's explore why this is the correct answer using reasoning:
Therefore, the phenomenon where a conductor cuts magnetic flux is essential for electromagnetic induction as per Faraday's laws.
Pregunta 11 Informe
An effort of 40N is applied on a machine to lift a mass of 60kg. Determine the mechanical advantage of the machine [ g = 10ms2 ]
Detalles de la respuesta
To determine the Mechanical Advantage (MA) of a machine, we use the formula:
MA = Load / Effort
Here, the Load is the weight of the mass being lifted, and the Effort is the force applied on the machine.
First, we need to calculate the Load. The Load is obtained by multiplying the mass of the object by the acceleration due to gravity (g = 10 m/s2).
So, the Load (weight of the mass) is:
Load = Mass × Gravity = 60 kg × 10 m/s2 = 600 N
The Effort given is 40 N.
Now, we can calculate the Mechanical Advantage:
MA = Load / Effort = 600 N / 40 N = 15
Therefore, the Mechanical Advantage of the machine is 15.
Pregunta 12 Informe
One main feature of trees in the savanna habitat is the possession of
Detalles de la respuesta
The main feature of trees in the savanna habitat is the possession of thick, corky bark. The savanna is characterized by a distinct wet and dry season. During the dry season, fires are common as dry grasses and leaves become highly flammable. To adapt to this environmental condition, many trees in the savanna have developed a thick, corky bark which helps protect them against these frequent fires. This bark acts as an insulator, shielding the vital inner tissues of the tree from the heat of the flames. Additionally, this adaptation helps the trees retain moisture, which is crucial during the arid months when water is scarce.
Pregunta 13 Informe
If the S.V.P of water vapour was 13.5mmHg at 33ºC and 7.3mmHg at 7ºC. Find the percentage relative of the air on a day when average air temperature was 33ºC and dew point was 7ºC.
Detalles de la respuesta
To calculate the percentage relative humidity of the air, we use the relationship between the saturation vapour pressure (SVP) and the actual vapour pressure. The formula for relative humidity is:
Relative Humidity (%) = (Actual Vapour Pressure / Saturation Vapour Pressure) * 100
In this problem, the "dew point" refers to the temperature at which air becomes saturated with moisture and water begins to condense. At the dew point, the actual vapour pressure is equal to the saturation vapour pressure at that dew point temperature.
From the problem, we have:
The actual vapour pressure of the air is equal to the SVP at the dew point, which is 7.3 mmHg.
Now we calculate the percentage relative humidity using the formula:
Relative Humidity (%) = (7.3 mmHg / 13.5 mmHg) * 100
Carrying out the calculation:
Relative Humidity (%) = (7.3 / 13.5) * 100 = 0.5407 * 100 = 54.07%
Rounding to the nearest whole number, we get **54%**. Therefore, the percentage relative humidity of the air is 54%.
Pregunta 14 Informe
The device for measuring the angle of dip is
Detalles de la respuesta
The device used for measuring the angle of dip is the dip circle.
Let me explain this in simple terms:
The angle of dip, also known as the magnetic inclination, is the angle made by the Earth's magnetic field lines with the horizontal plane. It varies depending on where you are on the Earth's surface. In some places, magnetic field lines are nearly vertical, while in others they are more horizontal.
A dip circle is a specialized scientific instrument used to measure this angle. It usually consists of a magnetic needle that is free to rotate in the vertical plane.
When using a dip circle, you align it so that its plane is parallel to the direction of the Earth's magnetic field. Then, you read the angle at which the magnetic needle stabilizes. This is the angle of dip. The instrument's mechanism allows for accurate measurement of this angle by compensating for any external influences or inclinations.
Pregunta 15 Informe
The acceleration of a free fall due to gravity is not a constant everywhere on the Earth's surface because
Detalles de la respuesta
The elliptical shape of the Earth: The Earth is not a perfect sphere; it is slightly flattened at the poles and bulging at the equator. This shape causes variations in gravitational acceleration.
Pregunta 16 Informe
Calculate the quantity of heat for copper rod whose thermal capacity is 400Jk−1 for a temperature change of 60ºC to 80ºC
Detalles de la respuesta
To calculate the quantity of heat absorbed or released by a substance, we can use the formula:
Q = C × ΔT
where:
Given:
First, calculate the change in temperature:
ΔT = Final temperature - Initial temperature = 80°C - 60°C = 20°C
Now, substitute the values into the formula to find the quantity of heat:
Q = 400 J/°C × 20°C
Calculate the answer:
Q = 8000 J
Since the options provided are in kilojoules (KJ), we need to convert joules (J) to kilojoules (1 KJ = 1000 J):
Q = 8000 J ÷ 1000 = 8 KJ
Therefore, the quantity of heat for the copper rod, given the specified conditions, is 8 KJ.
Pregunta 17 Informe
Use the diagram above to answer the question that follows
The diagram above is
Detalles de la respuesta
The diagram in the image represents the urinary system, as indicated by the correct answer. The urinary system includes the kidneys, ureters, bladder, and urethra, which are responsible for filtering blood and excreting waste in the form of urine.
Kidneys – Filter waste and excess fluids from the blood to form urine.
Ureters – Tubes that carry urine from the kidneys to the bladder.
Urinary Bladder – Stores urine before it is expelled from the body.
Urethra – A tube that allows urine to exit the body.
This system plays a crucial role in maintaining the body's fluid balance and removing waste products.
Pregunta 18 Informe
Which of these gas laws is equivalent to workdone
Detalles de la respuesta
To understand which of these gas laws is equivalent to work done, we must first understand the basic concept of work in the context of gases. For gases, work is done when there is a change in volume under pressure, typically expressed as W = P ΔV, where W is work, P is pressure, and ΔV is the change in volume.
Let's consider the given gas laws:
Among these, Boyle's law relates directly to work done because it involves a change in volume at constant temperature, implying that work occurs as a gas expands or compresses. The equation P₁V₁ = P₂V₂ is foundational for calculating work done in reversible processes, which aligns with the expression for work done on a gas, W = P ΔV. Thus, **Boyle's law** is most directly connected to the concept of work done on a gas.
Pregunta 19 Informe
An air force jet flying with a speed of 335m/s went past an anti-aircraft gun. How far is the aircraft 5s later when the gun was fired?
Detalles de la respuesta
To solve this problem, we need to determine how far the aircraft travels in the 5 seconds after it passes the anti-aircraft gun. The problem gives us two key pieces of information:
To find the distance traveled, we use the formula for distance:
Distance = Speed × Time
Plugging in the given values:
Distance = 335 m/s × 5 s
Calculating this, we get:
Distance = 1675 meters
This means the aircraft is 1675 meters away from the point where it passed the anti-aircraft gun after 5 seconds.
Pregunta 20 Informe
Which of the following operates based on magnetic effect of electric current?
Detalles de la respuesta
The device that operates based on the magnetic effect of electric current is the Dynamo.
To explain further, let's look at the concept of the magnetic effect of electric current:
A Dynamo is a device that converts mechanical energy into electrical energy. It operates based on the phenomenon called electromagnetic induction, which occurs due to the magnetic effect of electric current. When a coil of wire within the dynamo rotates in the presence of a magnetic field, it induces an electric current in the coil. Thus, the operation of a dynamo relies on the interaction between electric current and magnetic fields.
To contrast with other options:
Pregunta 21 Informe
At absolute zero temperature, the average velocity of the molecules
Detalles de la respuesta
At absolute zero temperature, which is defined as 0 Kelvin or -273.15 degrees Celsius, the energy of molecular motion ceases. This means that the molecules theoretically have minimal energy, and hence, their motion stops entirely. Therefore, the average velocity of the molecules is zero. In reality, absolute zero is a theoretical limit, and it is practically unreachable, but it serves as a concept to help in understanding the behavior of molecules at extremely low temperatures. Thus, under this theoretical condition, the average motion of molecules would be nonexistent. In summary, the average velocity of the molecules at absolute zero is zero.
Pregunta 22 Informe
The gravitational force between two objects is 10N, what is the new value of the force if the distance between them is halved?
Detalles de la respuesta
The gravitational force between two objects is determined by Newton's Law of Universal Gravitation, which can be expressed by the formula:
F = G * (m1 * m2) / r²
where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between the centers of the two objects.
In this problem, it is given that the initial gravitational force is 10N. According to the formula, the gravitational force is inversely proportional to the square of the distance between the two objects.
So, if the distance between the objects is halved (i.e., r becomes r/2), then the new gravitational force F' can be calculated based on the relationship:
F' = G * (m1 * m2) / (r/2)² = G * (m1 * m2) / (r²/4) = 4 * (G * m1 * m2 / r²) = 4 * F
Since the initial force F was 10N, the new force F' when the distance is halved is:
F' = 4 * 10 = 40N
Thus, the new value of the gravitational force is 40N.
Pregunta 23 Informe
Using the diagram above, calculate the relative density of x, if the density of methanol is 800kgm−3
Detalles de la respuesta
density of methanol = 800kgm−3 → 0.8gcm−3
At equilibrium, the density of methanol = the density of liquid x
ρ x h x g = ρ x x hx x g
0.8 x 7.1 = ρ x x 14.2
ρ x = 0.8×7.114.2 = 0.4gcm−3
∴ , the relative density of liquid x = 0.4
Relative density of X = density of liquid xdensity of methanol = 0.40.8 = 0.5
Pregunta 24 Informe
288KJ is conducted across two opposite faces of a 3m cube of temperature gradient 90ºCm−1 in 7200s. Calculate the thermal conductivity.
Detalles de la respuesta
The thermal conductivity of a material is a measure of its ability to conduct heat. It is defined by the formula:
Q = k × A × ΔT/Δx × t
Where:
We are given:
The cube has each side measuring 3 meters, so the area A of one face (since heat is conducted across two opposite faces, effectively using one face area for calculation) is:
A = 3m × 3m = 9 m2
Now, we need to solve for k (thermal conductivity):
Q = k × A × ΔT/Δx × t
288,000 J = k × 9 m2 × 90 ºC/m × 7,200 s
k = 288,000 / (9 × 90 × 7,200)
Calculate the denominator:
9 × 90 × 7,200 = 5,832,000
Therefore:
k = 288,000 / 5,832,000 ≈ 0.0493 W/mK
This converts approximately to 4.93 × 10-2 W/mK.
Therefore, the correct answer is 4.9 × 10-2 W/mK.
Pregunta 25 Informe
A body is pulled on a horizontal surface with a rope inclined at 30º to the vertical. If the effective force pulling the body along the horizontal surface is 15N, calculate the tension on the rope.
Detalles de la respuesta
In this problem, the tension in the rope results in a force that acts to pull the body along the horizontal surface. The rope is inclined at 30º to the vertical, which means it makes an angle of 60º with the horizontal since the total angle between vertical and horizontal is 90º.
To find the tension in the rope, we first understand that the component of the tension force acting along the horizontal surface is given by the formula:
F_horizontal = Tension * cos(θ)
Where:
Given that F_horizontal = 15N, we substitute into the equation:
15N = Tension * cos(60º)
We know that cos(60º) = 0.5, therefore:
15N = Tension * 0.5
To find the Tension, divide both sides of the equation by 0.5:
Tension = 15N / 0.5
Tension = 30N
Therefore, the tension in the rope is 30N.
Pregunta 26 Informe
Electrolysis can be investigated using
Detalles de la respuesta
When investigating electrolysis, the most relevant instrument from the list provided is the Voltameter. This is because the voltameter is specifically designed to measure the amount of substance that is deposited or consumed at electrodes during the electrolysis of an electrolyte. It functions based on the chemical change associated with the electric current passing through the electrolyte.
Here is a simple explanation of how electrolysis works and why a voltameter is useful:
Electrolysis is the process of using electricity to cause a chemical reaction, which is usually a decomposition reaction. This involves passing an electric current through an electrolyte (a substance containing free ions). These ions migrate towards electrodes, resulting in chemical changes. The key aspect to measure during electrolysis is the amount of material (e.g., metal or gas) that is deposited at the electrodes.
The Voltameter helps in understanding electrolysis because:
Voltmeter, Ammeter, and Galvanometer are not used primarily for investigating electrolysis:
Pregunta 27 Informe
A refrigerator uses 150W. If it is kept on for 336 hours non-stop, what is the energy consumed in KWh?
Detalles de la respuesta
To calculate the energy consumption of an appliance, you can use the formula:
Energy (in KWh) = Power (in kW) × Time (in hours)
First, convert the power rating of the refrigerator from watts (W) to kilowatts (kW). Since 1 kW is equal to 1000 W, you can convert 150W to kilowatts by dividing by 1000:
150 W = 0.150 kW
Next, calculate the energy consumed over the period the refrigerator is kept on, which is 336 hours. Use the formula:
Energy = 0.150 kW × 336 hours
Now, perform the multiplication:
Energy = 50.40 kWh
Therefore, when the refrigerator is kept on for 336 hours non-stop, it consumes 50.40 kWh of energy. This is the correct choice.
Pregunta 28 Informe
One of these is not the use of an electroscope
Detalles de la respuesta
Measuring ionization current in air:
This is typically not a function of an electroscope. While it can detect charge, it does not measure ionization currents, which require specialized equipment like an ionization chamber.
Pregunta 29 Informe
At a pressure of 105 Nm−2 , a gas has a volume of 20m3 . Calculate the volume at 4 x 105 Nm−2 at constant temperature.
Detalles de la respuesta
In order to solve this problem, we can apply **Boyle's Law**, which states that the **pressure** and **volume** of a gas are inversely proportional at a constant temperature. Mathematically, this is expressed as:
P1V1 = P2V2
Where:
Rearranging the formula to solve for V2:
V2 = (P1V1) / P2
Substituting the given values:
V2 = (105 Nm-2 x 20 m3) / (4 x 105 Nm-2)
By calculating:
V2 = (2100 m3) / 4 x 105
V2 = 5 m3
Therefore, at a pressure of 4 x 105 Nm-2, the volume of the gas is 5 m3.
Pregunta 30 Informe
Bile is a greenish alkaline liquid which is stored in the
Detalles de la respuesta
Bile is a greenish alkaline liquid that plays a crucial role in the digestive process, particularly in the digestion and absorption of fats. It is produced in the liver, but it is not stored there. Instead, the bile is transported to a small organ where it is concentrated and stored until the body needs it for digestion. This organ is the gall bladder.
The gall bladder stores the bile and releases it into the small intestine when food, especially fatty food, enters the digestive tract. This helps in breaking down the fats into smaller droplets, making it easier for enzymes to digest them.
To sum up, the gall bladder is the organ responsible for storing bile.
Pregunta 31 Informe
A body is whirled in a horizontal circle at the rate of 800 revolutions per minute. Determine the angular velocity
Detalles de la respuesta
To determine the angular velocity of a body whirled in a horizontal circle at a rate of 800 revolutions per minute (rpm), we need to convert this to the standard unit of angular velocity, which is radians per second (rad/s).
Here’s how you can calculate it:
Now let's perform the conversion:
Rounding up the decimal to a consistent significant figure, the angular velocity is approximately 26.7π radians per second.
Pregunta 32 Informe
A mass of gas at 40mmHg is heated from 298k to 348k at constant volume. Cal the pressure exerted by the gas.
Detalles de la respuesta
To determine the new pressure exerted by the gas when it is heated, we'll apply **Gay-Lussac's Law**. This law states that at constant volume, the pressure of a given amount of gas is directly proportional to its absolute temperature. Mathematically, it can be expressed as:
P1/T1 = P2/T2
Where:
By rearranging the formula to solve for the final pressure (P2), we get:
P2 = P1 * (T2/T1)
Now, insert the given values into the equation:
P2 = 40 mmHg * (348 K / 298 K)
Perform the calculations:
P2 = 40 mmHg * (348 / 298)
P2 = 40 mmHg * 1.1678
P2 = 46.71 mmHg
So, the new pressure exerted by the gas when it is heated from 298 K to 348 K at constant volume is 46.71 mmHg.
Pregunta 33 Informe
The energy of light of frequency 2.0 x 1015 Hz is (h = 6.63 x 10−34 Js)
Detalles de la respuesta
To determine the energy of light given its frequency, we can utilize the formula:
E = h × f
Where:
E is the energy of the photon in joules (J)
h is Planck's constant, approximately 6.63 × 10-34 J·s
f is the frequency of light in hertz (Hz)
Given the frequency f = 2.0 × 1015 Hz, we can substitute the known values into our equation:
E = 6.63 × 10-34 J·s × 2.0 × 1015 Hz
To simplify the calculation, multiply the numerical parts and then add the indices of 10:
E = (6.63 × 2.0) × (10-34 × 1015)
E = 13.26 × 10-19 J
This can be approximated to 1.33 × 10-18 J. Thus, the energy of light with the given frequency is 1.33 × 10-18 J.
Pregunta 34 Informe
The dimension of power is
Detalles de la respuesta
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Pregunta 35 Informe
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Detalles de la respuesta
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Pregunta 36 Informe
Which of the following measuring instruments operates based on the heating effect of electric current?
Detalles de la respuesta
Hot wire ammeters measure current by detecting the heat produced in a wire due to the electric current flowing through it.
Pregunta 37 Informe
A practical application of total internal reflection is found in
Detalles de la respuesta
A practical application of total internal reflection is found in fiber optics.
To understand this, let's break it down:
When light travels from one medium to another (such as from glass to air), it changes direction. This is known as refraction. However, there is a phenomenon called total internal reflection which occurs when light is traveling within a denser medium towards a less dense medium (like from glass to air) and hits the boundary at an angle greater than a certain critical angle. Instead of passing through, the light is completely reflected back into the denser medium.
Fiber optics technology makes use of this principle. In fiber optics, light is transmitted along the core of a thin glass or plastic fiber. The core is surrounded by another layer called the cladding. This cladding has a lower refractive index than the core, which facilitates total internal reflection. As a result, the light continuously reflects internally along the length of the fiber, allowing it to travel long distances with minimal loss.
This property is harnessed in various applications such as in high-speed telecommunication systems, medical equipment like endoscopes, and other technologies that require the transmission of data over long distances with high efficiency.
Pregunta 38 Informe
A hydrometer of mass y kg and volume 2y x 10−5 m3 floats in a fluid with 20% of its volume above the fluid, what is the density of the fluid?
Detalles de la respuesta
To find the density of the fluid, we need to apply the principle of floatation, which states that the weight of the fluid displaced by the submerged part of the object is equal to the weight of the object. Let's walk through the steps:
Step 1: Understand the volume submerged
The hydrometer has a total volume of 2y x 10-5 m3. It floats with 20% of its volume above the fluid. Hence, 80% of its volume is submerged in the fluid.
Submerged Volume, Vsub = (0.80) x (2y x 10-5 m3) = 1.6y x 10-5 m3
Step 2: Apply the principle of floatation
The weight of the fluid displaced equals the weight of the hydrometer.
Weight of hydrometer = Mass x Gravity = y kg x g (where g is the acceleration due to gravity). For the purpose of calculations, g can be considered as 9.81 m/s2.
Weight of displaced fluid = Density of fluid (ρfluid) x Submerged Volume x g
According to the principle of floatation:
y x g = ρfluid x 1.6y x 10-5 m3 x g
g is common on both sides and can be canceled out:
y = ρfluid x 1.6y x 10-5
Step 3: Solving for the density of the fluid
ρfluid = y / (1.6y x 10-5)
The y on both numerator and denominator cancels out:
ρfluid = 1 / (1.6 x 10-5)
ρfluid = 6.25 x 104 kg/m3
Thus, the density of the fluid is 6.25 x 104 kg/m3.
Pregunta 39 Informe
When a cell of e.m.f 3.06V is connected, the balance of a potentiometer is 75cm, Calculate the new balance of a cell of e.m.f 2.295V
Detalles de la respuesta
To solve this problem, we first need to understand the principle behind a potentiometer. A potentiometer is a device used to measure the electromotive force (e.m.f) of a cell by comparing it with a known voltage. The balance length on a potentiometer corresponds to a proportional measurement of the e.m.f.
Let's denote:
- \( V_1 \): the e.m.f of the first cell = 3.06V
- \( l_1 \): the balance length for the first cell = 75 cm
- \( V_2 \): the e.m.f of the second cell = 2.295V
- \( l_2 \): the balance length for the second cell (which we need to find)
The basic relationship for a potentiometer is given by:
\( V_1 / V_2 = l_1 / l_2 \)
Substituting the given values:
\( 3.06 / 2.295 = 75 / l_2 \)
We need to solve for \( l_2 \):
\( l_2 = (2.295 \times 75) / 3.06 \)
Now, calculating the above expression:
\( l_2 = 171.975 / 3.06 \approx 56.26 \) cm
Therefore, the new balance length for the cell with an e.m.f of 2.295V is approximately 56.26 cm.
Pregunta 40 Informe
The force of attraction between molecules of the same substance is
Detalles de la respuesta
The force of attraction between molecules of the same substance is called cohesion.
To understand this simply:
Cohesion refers to the attractive forces acting between similar molecules. For example, water molecules attract each other due to hydrogen bonding, which is a strong intermolecular force.
Let's break down some important concepts:
In summary, **cohesion** is the force that keeps the molecules of the same substance, like water, attracting each other.
¿Te gustaría proceder con esta acción?