Wird geladen....
|
Drücken und Halten zum Ziehen |
|||
|
Hier klicken, um zu schließen |
|||
Frage 1 Bericht
The gravitational force between two objects is 10N, what is the new value of the force if the distance between them is halved?
Antwortdetails
The gravitational force between two objects is determined by Newton's Law of Universal Gravitation, which can be expressed by the formula:
F = G * (m1 * m2) / r²
where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between the centers of the two objects.
In this problem, it is given that the initial gravitational force is 10N. According to the formula, the gravitational force is inversely proportional to the square of the distance between the two objects.
So, if the distance between the objects is halved (i.e., r becomes r/2), then the new gravitational force F' can be calculated based on the relationship:
F' = G * (m1 * m2) / (r/2)² = G * (m1 * m2) / (r²/4) = 4 * (G * m1 * m2 / r²) = 4 * F
Since the initial force F was 10N, the new force F' when the distance is halved is:
F' = 4 * 10 = 40N
Thus, the new value of the gravitational force is 40N.
Frage 2 Bericht
Find the amount of current required to deposit 0.02kg of metal in a given electrolysis for 120 seconds. [electro chemical equivalent of the metal = 1.3 x 10−7 kgC−1 ]
Antwortdetails
To determine the amount of current required, we need to use Faraday's laws of electrolysis. The first law states that the mass of the substance deposited at an electrode is directly proportional to the quantity of electricity (or charge) that passes through the electrolyte.
Here, we have:
According to Faraday's first law of electrolysis, the mass (\( m \)) can be calculated by the formula:
m = z \times I \times t
Where:
Rearranging the formula to solve for current \( I \):
I = \(\frac{m}{z \times t}\)
Substituting the given values into the formula:
I = \(\frac{0.02 \, \text{kg}}{1.3 \times 10^{-7} \, \text{kg/C} \times 120 \, \text{s}}\)
Calculating the denominator:
I = \(\frac{0.02}{1.56 \times 10^{-5}}\)
Solving for \( I \):
I = 1282.05 \, \text{A}
Thus, the appropriate amount of current required to deposit 0.02 kg of metal in 120 seconds is approximately 1.3 x 103 A.
Frage 3 Bericht
At absolute zero temperature, the average velocity of the molecules
Antwortdetails
At absolute zero temperature, which is defined as 0 Kelvin or -273.15 degrees Celsius, the energy of molecular motion ceases. This means that the molecules theoretically have minimal energy, and hence, their motion stops entirely. Therefore, the average velocity of the molecules is zero. In reality, absolute zero is a theoretical limit, and it is practically unreachable, but it serves as a concept to help in understanding the behavior of molecules at extremely low temperatures. Thus, under this theoretical condition, the average motion of molecules would be nonexistent. In summary, the average velocity of the molecules at absolute zero is zero.
Frage 4 Bericht
Inbreeding is highly discouraged in humans because it may
Antwortdetails
Inbreeding is the process where closely related individuals, like cousins or siblings, mate and produce offspring. **This practice is highly discouraged in humans for several reasons, but a significant concern is the potential for an outbreak of hereditary diseases.**
Here’s why inbreeding is problematic:
Therefore, **to promote genetic diversity and reduce the risk of hereditary diseases in offspring, inbreeding is discouraged in human populations**. This way, offspring are less likely to inherit harmful genetic combinations that can lead to health problems.
Frage 5 Bericht
If a body in linear motion changes from point P to Q, the motion is
Antwortdetails
When a body moves in a straight line from one point, such as point P, to another point, such as point Q, the motion is called Translational Motion. This kind of motion refers to an object moving along a path in which every part of the object takes the same path as a reference point. This means that if you follow any point on the body, it covers the same amount of distance in the same time frame as any other point.
Let's break down the other options:
In conclusion, since the body is moving from point P to point Q along a straight line, it exhibits Translational Motion.
Frage 6 Bericht
What will be the weight of a man of mass 60kg standing in a lift if the lift is descending vertically at 3ms2 ?
Antwortdetails
To find the apparent weight of a man of mass 60 kg standing in a descending lift, we first need to understand the concept of apparent weight. Apparent weight is the force that the man feels as his weight due to the reaction of the lift floor on him. When the lift accelerates, the apparent weight changes from his actual weight.
In this case, the lift is descending with a constant velocity of 3 m/s2. Since the acceleration is downward, it means the lift is accelerating negatively compared to an upward acceleration.
The formula to find the apparent weight (Wapparent) when in a lift is:
Wapparent = m(g - a)
Where:
Substituting these values into the formula, we get:
Wapparent = 60 (9.8 - 3)
Calculating further:
Wapparent = 60 × 6.8
Wapparent = 408 N
The closest option to 408 N in the answers provided is 420 N. Therefore, the correct answer is 420 N.
Frage 7 Bericht
What is the colour of red rose under a blue light?
Antwortdetails
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Frage 8 Bericht
A body is pulled on a horizontal surface with a rope inclined at 30º to the vertical. If the effective force pulling the body along the horizontal surface is 15N, calculate the tension on the rope.
Antwortdetails
In this problem, the tension in the rope results in a force that acts to pull the body along the horizontal surface. The rope is inclined at 30º to the vertical, which means it makes an angle of 60º with the horizontal since the total angle between vertical and horizontal is 90º.
To find the tension in the rope, we first understand that the component of the tension force acting along the horizontal surface is given by the formula:
F_horizontal = Tension * cos(θ)
Where:
Given that F_horizontal = 15N, we substitute into the equation:
15N = Tension * cos(60º)
We know that cos(60º) = 0.5, therefore:
15N = Tension * 0.5
To find the Tension, divide both sides of the equation by 0.5:
Tension = 15N / 0.5
Tension = 30N
Therefore, the tension in the rope is 30N.
Frage 9 Bericht
An object is placed 25cm in front of a convex mirror has its image formed 5cm behind the mirror. what is the focal length of the convex mirror
Antwortdetails
Object distance (u) = -25 cm (negative because the object is in front of the mirror)
Image distance (v) = +5 cm (positive because the image is behind the convex mirror)
Using 1f = 1u + 1v
1f = 1−25 + 15
f = 254 = 6.250cm.
Frage 10 Bericht
A particular household utilizes three electrical appliances for six hours daily if the appliances are rated 80W, 100W, and 120W respectively. Calculate the electrical bills paid monthly if an average month is 31 days. [1kwh = #24.08k]
Antwortdetails
To calculate the monthly electrical bill, we first need to determine the total energy consumption of the household in kilowatt-hours (kWh). Here are the steps:
1. Calculate the total power consumption of the appliances daily:
2. Convert the daily power consumption from Watts to kilowatts (kW):
3. Calculate the energy used daily in kWh:
4. Calculate the monthly energy consumption:
5. Calculate the cost based on the rate:
Therefore, the monthly electrical bill is approximately ₦1343.66k.
Frage 11 Bericht
Mouth part adapted for piercing and sucking is found in
Antwortdetails
The mouthpart adapted for piercing and sucking is found in the mosquito. Mosquitoes have a specialized mouth structure called a proboscis. This proboscis is long and slender, allowing mosquitoes to puncture the skin of their hosts and suck blood. The proboscis is a complex structure that contains several needle-like parts that make the piercing and sucking process efficient and effective.
Frage 12 Bericht
Bilateral symmetry,cylindrical bodies and double openings are characteristic features of
Antwortdetails
Bilateral symmetry, cylindrical bodies, and double openings are characteristic features of nematodes. Nematodes, also known as roundworms, have a body structure that is symmetric along a single plane, which results in two mirror-image halves, thus exhibiting bilateral symmetry.
Furthermore, they usually have a cylindrical body shape, which means their bodies are long and narrow like a cylinder and taper at both ends. This shape helps them move through their environment easily. Additionally, nematodes have a complete digestive system with two openings: a mouth and an anus. This means that food enters through the mouth, gets digested, and waste exits through the anus.
In contrast, organisms like hydra, protozoa, and protists possess different anatomical features. Hydras, for example, typically show radial symmetry, and protozoa and protists generally do not have a well-defined body shape or bilateral symmetry as seen in nematodes. Therefore, the description fits nematodes best.
Frage 13 Bericht
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Antwortdetails
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Frage 14 Bericht
Bifocal lens is used to correct the eye defect of
Antwortdetails
Bifocal lenses are primarily used to correct the eye defect known as presbyopia. As people age, the lens of the eye naturally loses its flexibility, making it difficult to focus on objects that are close up. This condition is known as presbyopia. A bifocal lens is designed with two different optical powers to accommodate this need. The upper part of the lens is usually crafted for distance vision, while the lower segment is designed for near vision tasks, such as reading.
Astigmatism is a different eye condition caused by irregular curvature of the cornea or lens, resulting in blurred or distorted vision at all distances. This condition is typically corrected with cylindrical lenses rather than bifocals.
Hypermetropia, commonly known as farsightedness, is a condition where distant objects can be seen more clearly than near ones. Simple convex lenses are usually used for this correction.
Myopia, or nearsightedness, is a condition where nearby objects are seen clearly, while distant objects appear blurry. Concave lenses are generally used to correct this condition.
In summary, bifocal lenses are specifically designed to address the challenges of focusing at different distances simultaneously, making them ideal for managing presbyopia.
Frage 15 Bericht
Antwortdetails
To understand when a vapor is considered saturated, it is crucial to consider the rates of two significant processes: evaporation and condensation. **Evaporation** is the process where liquid molecules escape into the vapor phase, and its rate is denoted as **y**. On the other hand, **condensation** is the process where vapor molecules return to the liquid phase, with its rate denoted as **x**.
A vapor is said to be **saturated** when the rate of evaporation of the liquid is equal to the rate of condensation of the vapor. In simpler terms, the number of molecules leaving the liquid to become vapor is exactly equal to the number of molecules returning from the vapor to the liquid.
In mathematical terms, this condition can be described as **x = y**. Under this condition, the system reaches a dynamic equilibrium, and the vapor pressure of the system is at its maximum for the given temperature. At this point, the vapor cannot accommodate any more molecules, and thus, the vapor is in a saturated state.
Frage 16 Bericht
A cell of internal resistance of 2Ω supplies current through a resistor, X if the efficiency of the cell is 75%, find the value of X.
Antwortdetails
To solve the problem, let's first understand the concept of efficiency in this context. Efficiency refers to the ratio of the useful power output to the total power output of a system. In simpler terms, it tells us how much of the power provided by the cell is being effectively used by the resistor, X.
Given that the cell has an internal resistance (r) of 2Ω and we need the efficiency to be 75%, we will follow these steps:
Efficiency (%) = (R / (R + r)) * 100
Where:
According to the problem, efficiency is 75%, so:
(X / (X + 2)) * 100 = 75
First, let’s eliminate the percentage by dividing both sides by 100:
(X / (X + 2)) = 0.75
Now, let's solve for X:
X = 0.75 * (X + 2)
X = 0.75X + 1.5
0.25X = 1.5
X = 1.5 / 0.25
X = 6 Ω
Hence, for the cell to have an efficiency of 75%, the value of the resistor X must be 6Ω.
Frage 17 Bericht
The gravitational force between two objects masses 1024 kg and 1027 kg is 6.67N. Calculate the distance between them [ G = 6.6 x 10−11 Nm2 kg−2 ]
Antwortdetails
To calculate the distance between two objects based on the gravitational force acting between them, we need to use the formula for gravitational force:
F = (G * m1 * m2) / r²
Where:
We need to compute r by rearranging the formula:
r² = (G * m1 * m2) / F
Therefore, the distance r is:
r = √((G * m1 * m2) / F)
Substitute the given values into the equation:
r = √((6.6 x 10-11 Nm²/kg² * 1024 kg * 1027 kg) / 6.67 N)
Calculating inside the square root:
G * m1 * m2 = 6.6 x 10-11 * 1024 * 1027 = 6.6 x 1040 Nm²
Then divide by the force:
6.6 x 1040 Nm² / 6.67 N = 0.99 x 1040 m²
Finally, calculate the square root:
r = √(0.99 x 1040)
r ≈ 1.0 x 1020 m
Therefore, the distance between the two objects is approximately 1.0 x 1020 m.
Frage 18 Bericht
I It wets glass
II It needs to be coloured
III It has a low density
Water is not suitable for use as a thermometric liquid because
Antwortdetails
Water is not suitable for use as a thermometric liquid because:
a) It wets glass: This can cause issues with reading the level of the liquid.
b) It needs to be coloured: Water is typically clear, making it difficult to see the level without coloring.
c) It has a low density: This can affect the sensitivity and accuracy of the thermometer.
Frage 19 Bericht
Calculate the quantity of heat for copper rod whose thermal capacity is 400Jk−1 for a temperature change of 60ºC to 80ºC
Antwortdetails
To calculate the quantity of heat absorbed or released by a substance, we can use the formula:
Q = C × ΔT
where:
Given:
First, calculate the change in temperature:
ΔT = Final temperature - Initial temperature = 80°C - 60°C = 20°C
Now, substitute the values into the formula to find the quantity of heat:
Q = 400 J/°C × 20°C
Calculate the answer:
Q = 8000 J
Since the options provided are in kilojoules (KJ), we need to convert joules (J) to kilojoules (1 KJ = 1000 J):
Q = 8000 J ÷ 1000 = 8 KJ
Therefore, the quantity of heat for the copper rod, given the specified conditions, is 8 KJ.
Frage 20 Bericht
How much joules of heat are given out when a piece of iron, of mass 60g and specific heat capacity 460JKg−1 K−1 , cools from 75ºC to 35ºC
Antwortdetails
To find out how much heat is given out when the piece of iron cools down, we can use the formula for heat transfer:
Q = mcΔT
Where:
First, let's list the values given and convert the mass from grams to kilograms:
Now, calculate the change in temperature:
ΔT = final temperature - initial temperature = 35ºC - 75ºC = -40ºC
Note: Since we are calculating the heat given out as the iron cools, the temperature change will be negative, which will make Q positive, indicating heat is released.
Substitute these values into the heat transfer formula:
Q = mcΔT = (0.06 kg) x (460 J/Kg·K) x (-40ºC)
Q = 0.06 x 460 x -40
Q = -1104 Joules
Since the question asks for how much heat is given out, we consider the positive value of Q, which is 1104J. Therefore, 1104J of heat is given out when the piece of iron cools from 75ºC to 35ºC.
Frage 21 Bericht
The energy of light of frequency 2.0 x 1015 Hz is (h = 6.63 x 10−34 Js)
Antwortdetails
To determine the energy of light given its frequency, we can utilize the formula:
E = h × f
Where:
E is the energy of the photon in joules (J)
h is Planck's constant, approximately 6.63 × 10-34 J·s
f is the frequency of light in hertz (Hz)
Given the frequency f = 2.0 × 1015 Hz, we can substitute the known values into our equation:
E = 6.63 × 10-34 J·s × 2.0 × 1015 Hz
To simplify the calculation, multiply the numerical parts and then add the indices of 10:
E = (6.63 × 2.0) × (10-34 × 1015)
E = 13.26 × 10-19 J
This can be approximated to 1.33 × 10-18 J. Thus, the energy of light with the given frequency is 1.33 × 10-18 J.
Frage 22 Bericht
The dimension of power is
Antwortdetails
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Frage 23 Bericht
If a charge ion goes through a combined electric field E and magnetic field B, the resultant emergent velocity of the ion is
Antwortdetails
The resultant emergent velocity of a charged ion moving through combined electric and magnetic fields can be derived from the condition where the electric force equals the magnetic force. This gives us the formula for the velocity v:
q E = qvB
v = EB (q will cancel out)
NOTE: When both fields are present, for the ion to move without deflection, the electric force must equal the magnetic force.
Frage 24 Bericht
The part of the inner ear that is responsible for hearing is
Antwortdetails
The part of the inner ear that is responsible for hearing is the cochlea.
The inner ear is a complex structure, and each of its components serves different functions. Let me break it down further:
Thus, the cochlea is the crucial component of the inner ear responsible for converting sound vibrations into nerve signals, making it central to the process of hearing.
Frage 25 Bericht
Two tuning forks of frequencies 6Hz and 4Hz respectively are sounded together. The beat frequency is
Antwortdetails
When two sound waves of slightly different frequencies are sounded together, they interfere with each other in such a way that the intensity of the sound alternates between loud and soft. This phenomenon is known as "beats". The number of beats heard per second is called the "beat frequency".
The beat frequency can be calculated by subtracting the frequency of one wave from the frequency of the other. Mathematically, it is represented as:
Beat Frequency (fbeat) = | f1 - f2 |
Where:
In this case:
Using the formula:
fbeat = | 6Hz - 4Hz | = | 2Hz | = 2Hz
Therefore, the beat frequency is 2Hz. This means that you would hear 2 beats per second when the tuning forks of frequencies 6Hz and 4Hz are sounded together.
Frage 26 Bericht
The distance between two successive crests of a water wave is 0.25m. If a particle on the surface of the water makes four complete vertical oscillations in one second. Calculate the speed of the wave.
Antwortdetails
To calculate the speed of the wave, we need to understand some fundamental wave properties: **wavelength**, **frequency**, and **wave speed**.
1. **Wavelength (\( \lambda \))**: The wavelength is the distance between two successive crests of a wave. In this case, the wavelength is given as **0.25 meters**.
2. **Frequency (\( f \))**: Frequency is the number of complete oscillations or cycles that occur per second. It is given that a particle on the surface of the water makes **four complete vertical oscillations in one second**. So, the frequency is **4 Hz (hertz)**.
3. **Wave Speed (\( v \))**: The speed of a wave is calculated using the formula:
\( v = f \times \lambda \)
Where:
\( v \) is the wave speed,
\( f \) is the frequency, and
\( \lambda \) is the wavelength.
Substitute the given values into the formula:
\( v = 4 \text{ Hz} \times 0.25 \text{ m} \)
\( v = 1 \text{ m/s} \)
Therefore, the **speed of the wave** is 1 m/s.
Frage 27 Bericht
Infra-red thermometers work by detecting the
Antwortdetails
Infra-red thermometers work by detecting the radiation from the body and converting it to temperature. These thermometers are designed to measure the infrared radiation, also known as heat radiation, emitted by objects. All objects with a temperature above absolute zero emit infrared radiation. The thermometer's sensor captures this radiation and converts it into an electrical signal that can be read as a temperature measurement. This method allows for quick, non-contact temperature readings, which is why infrared thermometers are often used in medical settings, industrial applications, and more.
Frage 28 Bericht
The bursting of water pipes during very cold weather, when the water in the pipes form ice could be attributed to
Antwortdetails
The bursting of water pipes during very cold weather is primarily attributed to the expansion of water on freezing.
Here's why this happens:
1. **Normal water behavior below freezing:** Typically, when most substances freeze, they contract because the molecules get closer together. However, water behaves differently due to its unique molecular structure. As water freezes, it forms a crystalline structure that makes ice less dense than liquid water, causing it to expand.
2. **Effect of expansion:** When water inside a pipe freezes, it expands. This expansion puts tremendous pressure on the pipe walls because the solid ice takes up more space than the liquid water. Most pipes are rigid and do not have enough room to accommodate the expanded volume of ice.
3. **Resulting pressure:** The increased pressure caused by the expanding ice can cause the pipe to crack or burst, especially if there is no other outlet for the water or ice to expand into.
In summary, pipes burst during cold weather primarily due to the expansion of water as it freezes, which creates pressure that the pipe cannot withstand. This phenomenon is due to the unique property of water where it expands upon freezing, unlike most other substances which contract in their solid form.
Frage 29 Bericht
The process by which plants loss water to the atmosphere is
Antwortdetails
The process by which plants lose water to the atmosphere is called transpiration.
Transpiration is a fundamental process in the life of a plant. During this process, water is absorbed by the roots from the soil and is then transported through the xylem vessels in the stem and leaves. Once in the leaves, water evaporates into the atmosphere from the surface of tiny pores known as stomata.
Here's a simple breakdown of how transpiration works:
Transpiration is crucial for a number of reasons:
Understanding transpiration is essential in fields like agriculture, where managing water resources efficiently can significantly impact plant growth and crop yield.
Frage 30 Bericht
The fourth overtone of a closed pipes is 900Hz, its fundamental frequency is
Antwortdetails
To solve this problem, let's first understand how sound works in a closed pipe. A closed pipe has one end closed and another end open. Sound waves inside such a pipe create standing waves, where nodes (points of no movement) and antinodes (points of maximum movement) are formed.
For a closed pipe, the fundamental frequency (also called the first harmonic) has one node at the closed end and one antinode at the open end. The wavelength is four times the length of the pipe.
The overtone sequence for a closed pipe includes only odd harmonics: 1st (fundamental), 3rd, 5th, 7th, etc. The nth overtone is the 2nth + 1 harmonic. The equation for the frequency of a harmonic in a closed pipe is:
f_n = n * f_1, where f_n is the frequency of the nth harmonic and f_1 is the fundamental frequency
In this case, the fourth overtone corresponds to the 9th harmonic because 2 * 4 + 1 = 9. Therefore, we have:
900 Hz = 9 * f_1
To find the fundamental frequency (f_1), we solve for f_1:
f_1 = 900 Hz / 9
f_1 = 100 Hz
Therefore, the fundamental frequency is 100 Hz.
Frage 31 Bericht
If the velocity ratio of a machine is 4, what does it mean?
Antwortdetails
The velocity ratio of a machine is a concept used to explain how much the machine is expected to amplify the input motion. If the velocity ratio of a machine is 4, it means that the distance moved by the effort is 4 times greater than the distance moved by the load.
To understand this concept better, consider what a machine does: it allows you to apply a small effort over a longer distance to move a heavy load over a shorter distance. In this scenario, if the velocity ratio is 4, then for every 4 meters (or units of distance) you exert effort, the load will move 1 meter (or unit of distance).
Frage 32 Bericht
A sonometer's fundamental note is 50Hz, what is the new frequency when the tension is four times the original?
Antwortdetails
To solve this problem, we need to understand the relationship between tension and frequency in a sonometer wire. The frequency of a vibrating string, such as one in a sonometer, is directly proportional to the square root of the tension in the string. Mathematically, this relationship is expressed as:
f ∝ √T
Where f is the frequency and T is the tension. In the given problem, the original frequency is 50 Hz, and the tension is increased to four times its original value. Let's analyze how this change in tension affects the frequency:
- Original tension = T
- New tension = 4T
Substitute the new tension into the formula:
f_new = 50 Hz × √(4T/T)
Simplify the equation:
f_new = 50 Hz × √4
f_new = 50 Hz × 2
f_new = 100 Hz
Thus, when the tension is four times the original tension, the new frequency of the sonometer's fundamental note becomes 100 Hz.
Frage 33 Bericht
Use the diagram above to answer the question that follows
The organism belongs to kingdom
Antwortdetails
The diagram is that of the virus. Viruses are obligate parasites, meaning they can't produce their own energy or proteins. They enter the host cell and use the cell's machinery to make their own nucleic acids and proteins. Viruses also use the host cell's lipids and sugar chains to create their membranes and glycoproteins. This parasitic replication can severely damage the host cell, which can lead to disease or cell death. They usually enter your body through your mucous membranes. These include your eyes, nose, mouth, penis, vagina and anus.
Viruses are a unique type of organism that are not plants, animals, or bacteria. They are often classified in their own kingdom. However, for the sake of the question, since most of their attributes and metabolic activities are more of the bacteria, we'll go with option A - Monera
Frage 34 Bericht
A mass of gas at 40mmHg is heated from 298k to 348k at constant volume. Cal the pressure exerted by the gas.
Antwortdetails
To determine the new pressure exerted by the gas when it is heated, we'll apply **Gay-Lussac's Law**. This law states that at constant volume, the pressure of a given amount of gas is directly proportional to its absolute temperature. Mathematically, it can be expressed as:
P1/T1 = P2/T2
Where:
By rearranging the formula to solve for the final pressure (P2), we get:
P2 = P1 * (T2/T1)
Now, insert the given values into the equation:
P2 = 40 mmHg * (348 K / 298 K)
Perform the calculations:
P2 = 40 mmHg * (348 / 298)
P2 = 40 mmHg * 1.1678
P2 = 46.71 mmHg
So, the new pressure exerted by the gas when it is heated from 298 K to 348 K at constant volume is 46.71 mmHg.
Frage 35 Bericht
The simple form of the lead acid accumulator often has a negative pole of
Antwortdetails
The simple form of the lead acid accumulator often has a negative pole of lead plate. In a lead-acid battery, the key components include two electrodes and an electrolyte. The **negative pole**, also known as the cathode during discharge, is typically made of **lead (Pb)**, which is in the form of a **lead plate**. When the battery is in use or discharging, this lead reacts with sulphuric acid (the electrolyte) to create lead sulfate.
To break it down further:
Thus, by analyzing the composition and reactions within a lead-acid battery, it is clear that the **negative pole** is made from a **lead plate**.
Frage 36 Bericht
The velocity ratio of an inclined plane at 60º to the horizontal is
Antwortdetails
The concept of an inclined plane is all about simplifying the forces involved in moving or holding a load. The **velocity ratio (VR)** for an inclined plane is defined as the ratio of the distance moved by the effort to the distance moved by the load. This can also be expressed in terms of the lengths involved in the triangle made by the inclined plane.
For an inclined plane placed at an angle **θ** to the horizontal, the velocity ratio is given by the formula:
VR = 1/sin(θ)
Given that the inclined plane is at an angle of **60º**:
First, find the sine of 60º:
sin(60º) = √3/2 (approximately 0.866)
Now, substitute this value into the formula for VR:
VR = 1/sin(60º) ≈ 1/0.866 ≈ 1.155
The **velocity ratio** for an inclined plane at **60º** to the horizontal is **approximately 1.155**.
Frage 37 Bericht
Bile is a greenish alkaline liquid which is stored in the
Antwortdetails
Bile is a greenish alkaline liquid that plays a crucial role in the digestive process, particularly in the digestion and absorption of fats. It is produced in the liver, but it is not stored there. Instead, the bile is transported to a small organ where it is concentrated and stored until the body needs it for digestion. This organ is the gall bladder.
The gall bladder stores the bile and releases it into the small intestine when food, especially fatty food, enters the digestive tract. This helps in breaking down the fats into smaller droplets, making it easier for enzymes to digest them.
To sum up, the gall bladder is the organ responsible for storing bile.
Frage 38 Bericht
Under which conditions is work done
Antwortdetails
In physics, the concept of work is defined as the process of energy transfer that occurs when a force makes an object move. The conditions for work to be done are:
Now, let's evaluate each scenario:
A man supports a heavy load on his head with hands: In this case, although the man is applying a force upward to support the load, the load does not move in the direction of the force he is exerting (upward). Hence, no work is done.
A woman holds a pot of water: Similar to the first scenario, the woman applies an upward force to hold the pot. However, the pot remains stationary, and there is no movement in the direction of the force. Thus, no work is done.
A boy climbs onto a table: Here, as the boy climbs, he applies a force to move himself upward onto the table. The movement is in the direction of the upward force he is applying. Therefore, work is done.
A man pushes against a stationary petrol tanker: In this scenario, although the man is applying a force to the tanker, it does not move. Because there is no movement in the direction of the force, no work is done.
Frage 39 Bericht
I
6 X + 6 H2 O → C6 H12 O6 + 6O2
III chlorophyll II IV
Use the diagram above to answer question that follows
The part labelled I is
Antwortdetails
The part labelled I in the diagram refers to **sunlight**.
Here's a simple explanation:
The given chemical equation is a representation of **photosynthesis**, a process by which green plants, algae, and some bacteria convert light energy, typically from the sun, into chemical energy stored in glucose (C6H12O6) and release oxygen (O2) as a by-product.
In the context of the equation:
- **6CO2 (Carbon Dioxide) + 6H2O (Water) → C6H12O6 (Glucose) + 6O2 (Oxygen)**
The arrow indicates the transformation that occurs during the process. The **chlorophyll** (labelled in the diagram) indicates the presence of chlorophyll pigments in the chloroplasts of plant cells which are essential for **absorbing sunlight**.
Since **sunlight** is the source of energy that powers this transformation, it is the correct component for the part labelled I in the diagram.
Frage 40 Bericht
Antwortdetails
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Möchten Sie mit dieser Aktion fortfahren?