Wird geladen....
|
Drücken und Halten zum Ziehen |
|||
|
Hier klicken, um zu schließen |
|||
Frage 1 Bericht
Mercury which is spilled onto a glass surface forms ball-like shapes because____.
Antwortdetails
In case of small drops of mercury, the gravitational potential energy is negligible in comparison to the potential energy due to surface tension.Consequently, to keep the drop in equilibrium, the mercury drop’s surface tends to contract so that its surface area will be the least for a sphere and the drops will be spherical.
But in the case of bigger drops of mercury, the potential energy due to gravity is predominant over the potential energy due to surface tension.Consequently, to keep equilibrium , the mercury drop tends to assume minimum potential energy as possible, the drop becomes oval in shape and lower center of gravity.
Frage 2 Bericht
Palm oil from a bottle flows out more easily after it has been heated because the
Antwortdetails
Molecules cannot be given energy during the heating and the molecules of oil cannot force each other out
Frage 3 Bericht
If the focal length of a camera is 20cm, the distance from the film at which the lens must be set to produce a sharp image of 100cm away is
Antwortdetails
F = 20cm
V = 100cm
U = ?
1U
+ 1V
= 1F
120
+ 1100
= 1F
5+1100
= 1F
F = 1006
= 16.7cm
= 17cm
Frage 4 Bericht
A positively charged rod X is brought near an uncharged metal sphere Y and is then touched by a finger with X still in place. When the finger is removed, the result is that Y has
Antwortdetails
Frage 5 Bericht
The force between the molecules of a liquid in contact with that of a solid is?
Antwortdetails
(ii) Adhesion : The force of attraction between unlike molecules, i.e. between the molecules of different liquids or between the molecules of a liquid and those of a solid body when they are in contact with each other, is known as the force of adhesion. This force enables two different liquids to adhere to each other or a liquid to adhere to a solid body or surface.
Frage 6 Bericht
The efficiency of energy conversion on the energy flow through a hydroelectric power is?
Antwortdetails
Efficiency = useful energy output from machineenergy input into machine
= E3E2
Frage 7 Bericht
A man walks 1km due east and then 1 km due north. His displacement is
Antwortdetails
The man first walks 1 km due east, which means he has moved 1 km horizontally to the right of his starting point. Then, he walks 1 km due north, which means he has moved 1 km vertically upwards from his previous position. To find his displacement, we need to draw a straight line from his starting point to his final position, which represents the shortest distance between the two points. This line is called the displacement vector. We can use the Pythagorean theorem to calculate the length of the displacement vector. The horizontal and vertical distances are the two legs of a right-angled triangle, and the hypotenuse is the length of the displacement vector. Using the Pythagorean theorem, we get: displacement = √((1 km)^2 + (1 km)^2) = √2 km The direction of the displacement vector is the angle between the displacement vector and the due north direction. We can find this angle using trigonometry. The tangent of the angle is the ratio of the horizontal distance to the vertical distance: tan(θ) = (1 km) / (1 km) = 1 Using a calculator, we can find that the angle is 45°. Therefore, the man's displacement is √2 km in the direction N 45° E. So, the correct answer is √2km N 45°E.
Frage 8 Bericht
The photo cell works on the principle of the
Antwortdetails
The photocell works on the principle of the emission of electrons by incident radiation. In simple terms, a photocell is a device that converts light energy into electrical energy. It does this by using a material (such as silicon) that releases electrons when it is exposed to light. These electrons can then be collected and used to produce a current, which can be used to power an electrical device. The more light that hits the photocell, the more electrons are released and the greater the electrical current.
Frage 9 Bericht
When a known standard resistor of 2.0 is connected to the 0.0cm end of a meter bridge, the balance point is found to be at 55.0cm. What is the value of the unknown resistor?
Antwortdetails
A meter bridge is an instrument used to measure the unknown resistance of a conductor. The meter bridge consists of a long resistance wire AB of uniform cross-sectional area and a battery of known voltage connected across its ends. A galvanometer is connected across a point C on the wire, which is called the null point or balance point.
When a known standard resistor of 2.0 ohms is connected to the 0.0cm end of the meter bridge wire, the balance point is found to be at 55.0cm. This means that the resistance of the unknown resistor is equal to the resistance of a portion of the meter bridge wire between the 0.0cm and the 55.0cm point.
To find the value of the unknown resistor, we can use the principle of the Wheatstone bridge, which states that the ratio of the resistances in the two arms of a balanced bridge is equal.
Let R be the resistance of the unknown resistor, then we have:
R/2.0 = (100 - 55.0)/55.0
Simplifying this expression, we get:
R = 2.0 x (100 - 55.0)/55.0
R = 1.64 ohms
Therefore, the value of the unknown resistor is 1.64 ohms.
Frage 10 Bericht
A solid cube of side 50cm and mass 75kg floats in a liquid with 13 of its height above the liquid surface. The relative density of the liquid is?
Antwortdetails
Volume of liquid displaced
= 23
(0.5)3
Mass of liquid displaced = mass of floating cube = 75kg
Density of liquid = massvolume
= 75(73(0.5))
× 3
= 0.9 × 103kgm−3
R.D of liquid = (0.9)(1.0)
× 103
= 0.9
Frage 11 Bericht
An object weighs 30N in air and 21N in water. The weight of the object when completely immersed in a liquid of relative density 1.4 is
Antwortdetails
Weight of water displaced = upthrust = 30 - 21 = 9N
Mass of water displaced = 910
= 0.9kg
Volume of object = 9 × 10−4
m3
= (9 × 10−4
) (1.4 ×103)
= 1.26kg = 12N
30 - 12.6 = 17.4N
Frage 12 Bericht
Which of the following statements are TRUE of isotopes?
I. Isotopes of an element have the same chemical properties because they have the same number of electrons
II. Isotopes of elements are normally separated using physical properties
III. Isotopes of an element have the same number of protons in their nuclei
Antwortdetails
The correct answer is "I and III only". Isotopes of an element have the same number of protons in their nuclei, meaning they have the same atomic number and are therefore the same element. Because of this, they have the same chemical properties. However, isotopes of an element have different numbers of neutrons in their nuclei, which means they have different atomic masses. This is why isotopes can be separated using physical properties such as their mass or other characteristics related to their mass.
Frage 13 Bericht
A narrow beam of white light can be split up into different colours by a glass prism. The correct explanation is that
Antwortdetails
The correct explanation for why a narrow beam of white light can be split up into different colors by a glass prism is that different colors of white light travel with different speeds in glass. White light is made up of different colors with different wavelengths, ranging from violet to red. When a narrow beam of white light passes through a glass prism, the different colors refract at slightly different angles due to the fact that their wavelengths are different. This causes the different colors to spread out and form a spectrum. The amount of refraction that occurs depends on the speed of light in the medium. Different colors of light have different speeds in glass due to the fact that their wavelengths are different. This means that they will refract at different angles as they pass through the glass prism, causing them to spread out. So, the correct explanation for why a narrow beam of white light can be split up into different colors by a glass prism is that different colors of white light travel with different speeds in glass. Therefore, is the correct explanation. is incorrect because it describes what white light is made up of, but does not explain how it is split up into colors by a prism. is incorrect because a prism does not have all the colors of white light, but rather it separates the colors that are already present in white light. is incorrect because total internal reflection occurs when light is completely reflected back into the same medium, which is not what happens when white light is split up by a prism.
Frage 14 Bericht
Which of the following does NOT describe the Image formed by a plane minor?
Antwortdetails
The option that does NOT describe the image formed by a plane mirror is "Magnified". When an object is placed in front of a plane mirror, the image formed is: 1. Erect: The orientation of the object in the mirror is the same as the orientation of the object in real life. For example, if you raise your right hand in front of a plane mirror, the image in the mirror will also show your right hand raised. 2. Laterally inverted: The image formed in the mirror is flipped horizontally, which means that the left side of the object appears on the right side of the image and vice versa. For example, if you wear a shirt with the letter "H" on it and look at it in a plane mirror, the image will show the letter "H" flipped horizontally. 3. Same distance from the mirror as object: The image formed in the mirror is located behind the mirror at the same distance as the object is located in front of the mirror. For example, if you stand 1 meter away from a plane mirror, the image of yourself will also be located 1 meter away from the mirror, behind the mirror. 4. NOT magnified: The image formed in the plane mirror is of the same size as the object, which means that there is no magnification or reduction in the size of the image. For example, if you stand in front of a plane mirror with a height of 1 meter, the image of yourself in the mirror will also have a height of 1 meter. Therefore, the correct answer is "Magnified", as the image formed by a plane mirror is not magnified.
Frage 15 Bericht
The diagram shown represents a block-and-tackle pulley system on which an effort of W Newtons supports a load of 120.0N. If the efficiency of the machine is 40, then the value of W is?
Antwortdetails
Let the total number of pulleys used in both the blocks be n
.
In a block-and-tackle pulley system, the velocity ratio is equal to n.
Efficiency = MAVR×100%
MA=LE,VR=n
Efficiency = LE×1n×100%
E=LEff.×n×100%
E=120N40%×6×100%
E=50N
Frage 16 Bericht
Which of the following instruments is most suitable for measuring the outside diameter of a narrow pipe in a few millimeters in diameter?
Antwortdetails
The most suitable instrument for measuring the outside diameter of a narrow pipe in a few millimeters in diameter is a micrometer screw gauge. A micrometer screw gauge is a precision measuring instrument that can accurately measure small dimensions with high accuracy. It has a spindle that moves towards an anvil and a scale that indicates the measurement. The spindle moves in response to a small rotation of the thimble, allowing for precise and sensitive measurements. In contrast, a pair of calipers or a meter rule may not be accurate enough for measuring such small dimensions, and a tape rule may not be able to fit inside the narrow pipe. Therefore, a micrometer screw gauge is the most suitable option for measuring the outside diameter of a narrow pipe in a few millimeters in diameter.
Frage 17 Bericht
The density of 400cm3 of palm oil was 0.9gcm-3 before frying. If the density of the oil was 0.6gcm-3 after frying, assuming no loss of oil due to spilling, its new volume was?
Antwortdetails
The density of a substance is defined as its mass per unit volume. Therefore, the mass of the palm oil before frying was: Mass = Density x Volume = 0.9 g/cm³ x 400 cm³ = 360 g After frying, the mass of the palm oil remains the same, but its density changes to 0.6 g/cm³. Therefore, the new volume of the palm oil can be calculated by rearranging the density formula: Volume = Mass / Density = 360 g / 0.6 g/cm³ = 600 cm³ So the new volume of the palm oil after frying is 600 cm³. is the correct answer.
Frage 18 Bericht
Musical instruments playing the same note can be distinguished from one another owing to the difference in their
Antwortdetails
Different musical instruments playing the same note can be distinguished from one another due to the difference in their "timbre" or "tone color." Timbre refers to the unique character or quality of a sound that allows us to distinguish it from other sounds even when they have the same pitch and loudness. For example, a piano and a guitar playing the same note will sound different due to the differences in their timbre. This is why we can tell the difference between different instruments and why some instruments are better suited to certain styles of music than others.
Frage 19 Bericht
In the diagram shown, If the south-poles of two magnets stroke a steel bar, the polarities at T and V will respectively be
Antwortdetails
Frage 20 Bericht
In the diagram shown, which of the simple pendulum will resonate with P when set into oscillation?
Antwortdetails
Frage 21 Bericht
An object is placed 20cm from a concave mirror of focal length 10cm. The linear magnification of the image produced is?
Antwortdetails
The linear magnification of an image is given by the formula: magnification = height of image / height of object = -v/u where v is the image distance, u is the object distance, and the negative sign indicates that the image is inverted. In this problem, the object is placed 20cm from a concave mirror of focal length 10cm. Since the object is placed beyond the focal point, the image will be real and inverted. Using the mirror formula 1/f = 1/v + 1/u, we can find the image distance v: 1/10 = 1/v + 1/20 Solving for v, we get: v = -20 cm Now, we can use the magnification formula to find the linear magnification: magnification = -v/u = -(-20)/20 = 1 Therefore, the linear magnification of the image produced is 1, which means the image is the same size as the object and is also inverted. The answer is: 1.
Frage 22 Bericht
What is the resultant resistance of the circuit in the image shown?
Antwortdetails
Formulae resistance in parallel
= 1/R = 1/R1 +1/R2
1/R = 1/2 +1/2 = 1
Resistance are now in series
R = 1 + 3 + 4
= 8 ohms
Frage 23 Bericht
Shadows and eclipses result from the
Antwortdetails
The rectilinear propagation of light means that light travels in straight lines as a wave. This can be observed in the well-defined shadows formed when an object blocks a light source and through the use of a pinhole camera.
According to Sudipa Sarkar, the formation of shadows with sharp edges demonstrates the rectilinear propagation of light, i.e. The fact that light travels in straight line. When an opaque obstacle is placed between a source of light and a screen, a shadow of the obstacle is formed on the screen. The kind of shadow depends on the size of the source of light. If it is a point source (light from a small hole), the shadow obtained is a region of total darkness, called umbra.
If an extended source of light, e.g. a bulb, is used, the umbra is surrounded by a region of partial darkness, called penumbra. The moon is seen because it reflects the sun's light. An eclipse of the moon (lunar eclipse) occurs when the earth comes between the sun and the moon and prevents some of the light from the sun from reaching the moon. In other words, the earth casts its shadow on the moon. The solar eclipse occurs when the moon comes between the sun and the earth.
Frage 24 Bericht
A 20kg mass is to be pulled up a slope inclined at 300 to the horizontal. If efficiency of the plane is 75%. The force required to pull the load up the plane is J [g=10ms−2 ]
Antwortdetails
The force required to pull a 20kg mass up a slope inclined at 300 can be calculated using the formula: force = mass * gravity * sin(angle) where mass is 20kg, gravity is 10 m/s^2 and angle is 300. The formula for efficiency is: efficiency = output force / input force where output force is the force required to pull the mass up the slope and input force is the force applied to the rope. Since the efficiency of the plane is 75%, the input force is 4 times the output force. So, the output force can be calculated as: output force = input force / 4 input force = mass * gravity * sin(angle) / efficiency input force = 20 * 10 * sin(300) / 0.75 input force = 533.2 N And the output force can be calculated as: output force = input force / 4 output force = 533.2 / 4 output force = 133.3 N So, the force required to pull the load up the plane is 133.3 N.
Frage 25 Bericht
In the diagram given if the atmospheric pressure is 760mm, the pressure in the chamber G Is
Antwortdetails
Frage 26 Bericht
Which of the following may be used to explain a mirage?
I. Layers of air near the road surface have varying refractive indices in hot weather
II. Road surfaces sometimes become good reflectors in hot weather
III. Light from the sky can be reflected upwards after coming close to the road surface.
Antwortdetails
The phenomenon of a mirage can be explained by options I and III. A mirage is an optical illusion that occurs when light rays passing through a medium with varying refractive indices create a false image of distant objects or even the sky. In hot weather, the air near the road surface becomes hotter and less dense than the air above, causing the light passing through it to bend and create a reflection of the sky or objects in the distance. This effect is known as a temperature inversion. Additionally, light from the sky can be reflected upwards after coming close to the road surface, adding to the illusion of a reflected object or the sky. Option II, which suggests that road surfaces become good reflectors in hot weather, is not a valid explanation for a mirage. Therefore, the correct answer is: I and III only.
Frage 27 Bericht
A lens of focal length 15cm forms on erect image which is three times the size of the object. The distance between the object and the image is ___.
Antwortdetails
We can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length of the lens, v is the distance between the lens and the image, and u is the distance between the lens and the object. From the problem, we know that the focal length of the lens is 15 cm, and the image is erect and three times the size of the object. This means that the image distance v is positive and the object distance u is negative (since the object is in front of the lens). Let's assume that the object distance u is -x cm, where x is a positive number. Then, the image distance v is +3x cm, since the image is three times the size of the object. Substituting these values into the lens formula, we get: 1/15 = 1/(+3x) - 1/(-x) Simplifying the right-hand side, we get: 1/15 = (1 + 3)/3x Multiplying both sides by 3x, we get: 3x/15 = 4 Simplifying, we get: x = 20 Therefore, the distance between the object and the lens is -20 cm (since it is in front of the lens), and the distance between the image and the lens is +60 cm (since it is behind the lens). The distance between the object and the image is the sum of these distances, which is: (-20) + (+60) = 40 cm Therefore, the answer is 40cm.
Frage 28 Bericht
A solid weighs 45N and 15N respectively in air and water. Determine the relative density of the solid
Antwortdetails
The relative density of a substance is defined as the ratio of its density to the density of a reference substance, usually water at 4 degrees Celsius. In this problem, we can use the principle of buoyancy to determine the density of the solid. When an object is submerged in a fluid, it experiences an upward force called the buoyant force, which is equal to the weight of the fluid displaced by the object. If the object is less dense than the fluid, it will float, and if it is more dense, it will sink. We are given that the solid weighs 15 N in water, which means it displaces 15 N of water. The weight of the water displaced is equal to the buoyant force on the solid, which is equal to the weight of the solid when it is completely submerged in water. Therefore, the weight of the solid when it is completely submerged in water is 15 N. We are also given that the weight of the solid in air is 45 N. The difference between the weight of the solid in air and water is equal to the weight of the water displaced, which is 30 N. This means that the volume of water displaced by the solid is 30/9.8 = 3.06 L (since the density of water is 1000 kg/m^3 or 9.8 N/L). The relative density of the solid is equal to its density divided by the density of water. We can find the density of the solid by dividing its weight in air by its volume: Density of solid = Weight of solid in air / Volume of solid Density of solid = 45 N / (45 N - 15 N) [since weight of displaced water is 15N] Density of solid = 45 N / 30 N Density of solid = 1.5 N/L Therefore, the relative density of the solid is: Relative density = Density of solid / Density of water Relative density = 1.5 N/L / 1000 N/L Relative density = 0.0015 So the answer is 0.33 (rounded to two decimal places).
Frage 29 Bericht
A boy receives the echo of his clap reflected by a nearby hill 0.8s later. If the speed of sound in air is 3.40ms−1 , how far is he from the hill?
Antwortdetails
The speed of sound in air is given as 3.40 m/s. The echo of the clap is heard 0.8 seconds after it was produced, which means it traveled to the hill and back. The time taken for sound to travel to the hill is half of the time taken for it to travel to and from the hill. Therefore, the time taken for sound to travel to the hill is 0.8/2 = 0.4 seconds. We can use the formula: distance = speed x time to calculate the distance between the boy and the hill. distance = speed of sound x time taken for sound to travel to the hill distance = 3.40 m/s x 0.4 s distance = 1.36 m Therefore, the distance between the boy and the hill is 1.36 meters. However, the answer options provided are in meters and are significantly larger than 1.36 meters. It is possible that the speed of sound provided in the question is incorrect or the answer options are incorrect.
Frage 30 Bericht
Convex mirrors are used as driving mirrors because images formed are
Antwortdetails
Convex mirrors are used as driving mirrors because the images formed by them are "erect, virtual, and diminished." Let me explain what these terms mean: - Erect: It means that the image appears upright, just like the actual object. This is important for a driving mirror because it allows the driver to perceive the correct orientation of the vehicles behind them. - Virtual: It means that the image appears to be behind the mirror, and not in front of it. This is also important for a driving mirror because it allows the driver to see a wider field of view without having to turn their head. - Diminished: It means that the image is smaller than the actual object. This is important for a driving mirror because it allows the driver to see a larger area behind them while still fitting it within the mirror's frame. Overall, these properties make convex mirrors ideal for use as driving mirrors as they provide the driver with an accurate view of the vehicles behind them without sacrificing their field of view.
Frage 31 Bericht
In homes, electrical appliances and lamps are connected in parallel because
Antwortdetails
Frage 32 Bericht
A lead bullet of mass 0.05 kg is fired with a velocity of 200 ms into a lead block of mass 0.95 kg. Given that the lead block can move freely. the final kinetic energy after impact is
Antwortdetails
Frage 33 Bericht
Which of the following has the lowest internal resistance when new?
Antwortdetails
Among the given options, the Accumulator has the lowest internal resistance when new. Internal resistance is the resistance that a battery or cell provides to the flow of electric current within itself. Lower internal resistance means that the battery can supply more current to an external circuit without losing much of its own energy as heat. An Accumulator, also known as a rechargeable battery, is designed to be charged and discharged multiple times. It has a relatively low internal resistance when new, meaning it can provide a higher current than the other cells listed while wasting less energy internally as heat. A Leclanche cell and Daniell cell are primary cells, meaning they are designed to be used once and discarded. They have higher internal resistance compared to the accumulator, which limits their ability to supply high currents. A Torch battery, also known as a dry cell, is also a primary cell and has a higher internal resistance than the accumulator. It is commonly used in small electronic devices and has a longer shelf life than Leclanche and Daniell cells. In summary, an Accumulator has the lowest internal resistance when new, which makes it an ideal choice for applications requiring high current delivery such as electric vehicles, power tools, and renewable energy systems.
Frage 34 Bericht
Temperature is the property of a body which is proportional to the ____.
Antwortdetails
Temperature is proportional to the average kinetic energy of the molecules in a body. This means that as the average kinetic energy of the molecules increases, so does the temperature. Think about it like this: the hotter an object, the more energy its molecules have. This energy is what makes the molecules move faster, and therefore, the temperature of the object increases. The average kinetic energy of the molecules is a better measure of temperature than the maximum speed of the molecules because temperature is a measure of the overall energy distribution, not just the energy of a single molecule.
Frage 35 Bericht
A particle of mass M initially at rest splits into two. If one of the particles of mass M1 moves with velocity V1 , the second particle moves with velocity
Antwortdetails
When a particle of mass M splits into two, the total mass is conserved, and so the sum of the masses of the two resulting particles must be equal to M. If one of the particles of mass M1 moves with velocity V1, we can use the law of conservation of momentum to determine the velocity of the second particle. The law of conservation of momentum states that the total momentum of a system of particles remains constant if no external forces act on the system. In this case, the initial momentum of the system is zero, since the particle was initially at rest. After the particle splits, the momentum of the system is the sum of the momenta of the two resulting particles. Let's use the subscript 1 to represent the first particle of mass M1 and the subscript 2 to represent the second particle of mass M-M1. By conservation of momentum, we have: 0 = M1*V1 + (M - M1)*V2 Solving for V2, we get: V2 = -M1/M*(V1) Therefore, the second particle moves in the opposite direction with velocity -M1/M*(V1). This means that the two particles move in opposite directions, with the ratio of their velocities determined by the ratio of their masses. Option (D) in the table shows the correct answer, which is -M1/M*(V1).
Frage 36 Bericht
To keep a vehicle moving at a constant speed V requires power P from the engine. The force provided by the engine is
Antwortdetails
The force provided by the engine to keep a vehicle moving at a constant speed is proportional to the power (P) required from the engine. This power is proportional to the product of the speed (V) and force (P), so the relationship can be expressed as P = kV, where k is a proportionality constant.
Frage 37 Bericht
A room is heated by means of a charcoal fire, an occupants of the room standing away from the fire is warmed mainly by
Antwortdetails
The main way that the occupants of a room standing away from a charcoal fire are warmed is by radiation. Radiation is the transfer of heat energy through electromagnetic waves, and it can travel through empty space. In this scenario, the charcoal fire emits radiation in the form of infrared waves, which travel through the air and warm up the objects (including the occupants) in the room. Convection, on the other hand, is the transfer of heat through the movement of fluids (such as air), but in this case, the air in the room is not being actively circulated by a fan or other mechanism. Conduction involves the transfer of heat through direct contact between two objects, but the occupants are not in direct contact with the fire. Reflection refers to the bouncing of radiation off a surface, but it is not a significant factor in this scenario as most of the radiation is absorbed by the objects in the room.
Frage 38 Bericht
A car traveled at a uniform speed of 100km/h, spends 15m moving from point A to point B along its route. The distance between A and B is
Antwortdetails
To calculate the distance between point A and point B, we can use the formula: Distance = Speed x Time where the speed is given as 100 km/h and the time is given as 15 minutes, which we need to convert to hours. 1 hour = 60 minutes, so 15 minutes = 15/60 hours = 0.25 hours. Now, we can substitute these values into the formula: Distance = 100 km/h x 0.25 h = 25 km Therefore, the distance between point A and point B is 25 km. is the correct answer.
Frage 39 Bericht
The product of force and time is?
Antwortdetails
The product of force and time is known as impulse. Impulse can be defined as the change in momentum that an object experiences as a result of a force being applied to it over a period of time. In simpler terms, impulse is the "push" that an object receives from a force acting on it for a certain amount of time. The more force applied, or the longer the time the force is applied, the greater the impulse and the greater the change in momentum of the object. It's important to note that impulse is a vector quantity, meaning it has both magnitude and direction. Impulse is a measure of the ability of a force to cause an object to change its velocity, and can be used to explain many phenomena in physics, such as why a heavy object is harder to stop than a lighter one, or why a soccer ball changes direction when it is kicked.
Frage 40 Bericht
A body of mass 100g moving with a velocity if 10ms-1 collides with a wall. If after collision it moves with a velocity of 2.0ms−1 in the opposite direction, calculate the change in momentum.
Antwortdetails
Momentum = Mass x Velocity
Change in Momentum = Mass x (change in velocity)
Change in Momentum = Mass x (v - u)
Mass = 100g = 0.1kg
U = 2ms−1
V = 10ms−1
Change in momentum = m (v − u)
= 0.1 (10 − 2)
= 0.1 (8)
= 0.8Ns
Möchten Sie mit dieser Aktion fortfahren?