Wird geladen....
Drücken und Halten zum Ziehen |
|||
Hier klicken, um zu schließen |
Frage 2 Bericht
A balanced chemical equation obeys the law of
Antwortdetails
A balanced chemical equation obeys the law of conservation of mass. This means that in a chemical reaction, the total mass of the reactants must be equal to the total mass of the products. In other words, atoms cannot be created or destroyed during a chemical reaction, only rearranged. For example, if we burn a piece of wood, the mass of the ashes and the gases released will be equal to the mass of the original wood. This is because the atoms in the wood (carbon, hydrogen, oxygen, etc.) are rearranged during the burning process to form new molecules, but the total number of atoms remains the same. By balancing a chemical equation, we ensure that the same number and type of atoms are present on both sides of the equation, which satisfies the law of conservation of mass.
Frage 3 Bericht
According to Charles' law, the volume of a gas becomes zero at
Antwortdetails
Charles' law states that the volume of a gas is directly proportional to its temperature, provided that the pressure remains constant. This means that as the temperature of a gas increases, its volume also increases. However, it is important to note that this law only applies to ideal gases, which are theoretical gases that perfectly follow the laws of thermodynamics. According to Charles' law, the volume of a gas becomes zero at absolute zero, which is approximately -273°C. At this temperature, the gas particles would have no kinetic energy and would be in their lowest energy state. The volume of a real gas would not actually become zero at absolute zero because the gas particles would have some residual intermolecular interactions that would prevent them from completely collapsing to a single point.
Frage 4 Bericht
Which of the following is used to power steam engines?
Antwortdetails
Coal is the fuel that is typically used to power steam engines. Coal is burned in a furnace to heat water and produce steam, which is then used to power a steam engine. The steam engine converts the energy from the steam into mechanical energy, which can be used to power machines or generate electricity. Coal is a fossil fuel that has been used for centuries as a source of energy, and it played a significant role in the industrial revolution, powering steam engines that were used to drive machines in factories and transport goods and people by train. Today, steam engines are less common as other forms of energy have taken their place, but they remain an important part of our history and technological development.
Frage 5 Bericht
The number of electrons in the valence shell of an element of atomic number 14 is?
Antwortdetails
The number of electrons in the valence shell of an element can be determined by using the periodic table and the electron configuration of the element. The valence shell is the outermost shell that contains electrons that are involved in chemical reactions. For an element with atomic number 14, which is silicon, the electron configuration is 1s2 2s2 2p6 3s2 3p2. The valence shell of silicon is the third shell, which contains 3s2 and 3p2 electrons. Therefore, the number of electrons in the valence shell of silicon is 4 electrons.
Frage 6 Bericht
What is the PH of 0.00 1 moldm3 solution of the sodium hydroxide
Frage 7 Bericht
Calculate the pH of 0.05 moldm?3 H2 SO4
Antwortdetails
To solve this problem, we need to use the formula for calculating the pH of a solution, which is: pH = -log[H+] where [H+] is the concentration of hydrogen ions in moles per liter. The given chemical equation is: H2SO4 + 2H2O → 2H3O+ + SO42- From this equation, we can see that one molecule of sulfuric acid (H2SO4) can donate two hydrogen ions (H+) to the solution, which means that the concentration of hydrogen ions is twice the concentration of sulfuric acid. Therefore, the concentration of hydrogen ions in this solution is: [H+] = 2 x 0.05 moldm^-3 = 0.1 moldm^-3 Now we can use the formula for pH: pH = -log[H+] pH = -log(0.1) pH = 1.00 Therefore, the pH of the solution is 1.00.
Frage 8 Bericht
Methanoic acid mixes with water in all proportions and has about the same boiling point as water. Which of the following methods would you adopt to obtain pure water from a mixture of Sand, water and methanoic acid?
Frage 9 Bericht
An element X forms the following compounds with chlorine; XCl4 , XCl3 , XCl2 . This illustrates the
Antwortdetails
The element X forming different compounds with chlorine (XCl4, XCl3, and XCl2) illustrates the law of multiple proportions. This law states that when two elements combine to form more than one compound, the ratio of the masses of one element that combine with a fixed mass of the other element is always a whole number ratio. In this case, the ratio of chlorine to X in the different compounds (XCl4, XCl3, and XCl2) is 4:1, 3:1, and 2:1, respectively, which are all whole number ratios.
Frage 10 Bericht
The constituent common to duralumin and alnico is
Antwortdetails
The common constituent found in both duralumin and alnico is aluminum (Al). Duralumin is an alloy made up of aluminum, copper, manganese, and magnesium. It is known for its high strength and light weight, making it useful in various applications such as aerospace and construction. Alnico, on the other hand, is an alloy made of aluminum, nickel, cobalt, iron, and small amounts of other elements. It is used in the production of strong permanent magnets for various applications such as in motors, generators, and loudspeakers. So, even though duralumin and alnico have different properties and uses, they both contain the element aluminum.
Frage 11 Bericht
The collision theory explains reaction rates in terms of
Antwortdetails
The collision theory explains reaction rates in terms of the frequency of collision of the reactants. In other words, the theory suggests that for a chemical reaction to occur, the reactant particles must collide with sufficient energy and with the correct orientation. The frequency of these collisions is an important factor in determining the rate of the reaction. The more frequently the reactant particles collide, the more likely it is that they will react and form products. Therefore, increasing the frequency of collisions between reactant particles can increase the rate of a chemical reaction. The size of the reactants or the products does not play a significant role in the collision theory.
Frage 12 Bericht
Which of the following separation techniques can be employed in obtaining solvent from its solution?
Antwortdetails
The separation technique that can be employed in obtaining a solvent from its solution is evaporation. Evaporation is a process that involves heating a solution to vaporize the solvent, leaving behind the solute. The vaporized solvent can then be condensed and collected as a pure liquid. This technique is commonly used in industry and laboratory settings to recover solvents from solutions, as it is a simple and effective way to purify liquids. Distillation can also be used to separate a solvent from a solution, but it is a more complex process that involves boiling the solution and then condensing the vapors in a separate apparatus. Filtration and precipitation are not suitable for separating a solvent from a solution, as they are primarily used to separate solid particles from a liquid mixture.
Frage 13 Bericht
The alkanoic acid found in human sweat is
Antwortdetails
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Frage 14 Bericht
Aluminium does not react with either dilute or concentrated trioxonitrate (V) acid because
Antwortdetails
Frage 15 Bericht
The Consecutive members of an alkane homologous series differ by
Antwortdetails
The consecutive members of an alkane homologous series differ by a CH2 unit. This means that each successive member of the alkane series has one more CH2 unit than the previous member. For example, consider the simplest alkane, methane (CH4). The next member of the series is ethane (C2H6), which differs from methane by one CH2 unit. The next member after that is propane (C3H8), which differs from ethane by another CH2 unit. This pattern continues for all members of the alkane homologous series. The reason for this is that each carbon atom in the alkane chain must be bonded to four other atoms, which are usually hydrogen atoms. This means that each carbon atom in the chain can only bond to one other carbon atom. Therefore, the length of the alkane chain can only increase by adding CH2 units to the end of the chain. In summary, the consecutive members of an alkane homologous series differ by a CH2 unit because this is the only way to add length to the alkane chain while maintaining the required number of bonds for each carbon atom in the chain.
Frage 16 Bericht
If the molecular mass of tetraoxosulphate (VI) acid is 98, calculate its vapour density
Frage 17 Bericht
The salt that reacts with dilute hydrochloric acid to produce a pungent smelling gas which decolourizes acidified purple potassium tetraoxomanganate (VII) solution is
Antwortdetails
Frage 18 Bericht
3H2(g) + N2 ⇔ 2NH3(g) ; H= -ve
In the reaction above, lowering of temperature will
Frage 19 Bericht
The general formula of alkanones is
Frage 20 Bericht
Which of the following metals cannot replace hydrogen from water or steam?
Antwortdetails
Frage 21 Bericht
If one of the following oxides is heated with hydrogen or carbon using a bunsen burner. it is not reduced to the metal, Which one is it?
Antwortdetails
The oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner is magnesium oxide. Magnesium oxide is an ionic compound made up of positively charged magnesium ions and negatively charged oxygen ions. When heated with hydrogen or carbon, the oxygen ions are not easily removed from the compound. This is because the ionic bond between the magnesium and oxygen ions is very strong and requires a lot of energy to break. On the other hand, lead oxide, copper oxide, and tin oxide are all metal oxides and can be reduced to the metal by heating with hydrogen or carbon. This is because they have a weaker bond between the metal and oxygen ions, allowing the oxygen to be removed more easily when heated. In conclusion, magnesium oxide is the oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner.
Frage 22 Bericht
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as;
Antwortdetails
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as esterification. Esterification is the process of forming an ester, which is a type of organic compound, from an alcohol and an acid. The acid catalyst is used to speed up the reaction by providing a proton to the reaction mixture, which helps to form the ester. Esterification results in the loss of a water molecule from the reaction mixture, which makes the reaction a type of dehydration reaction. However, it is important to note that esterification is a specific type of dehydration reaction where the products are an ester and an alcohol. So, the answer is esterification.
Frage 23 Bericht
A given amount of gas occupies 10.0dm5 at 4atm and 273°C. The number of moles of the gas present is [Molar volume of gas at s.t.p = 22.4dm3
]
Antwortdetails
The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. We can use this equation to solve for the number of moles of gas present. First, we need to convert the volume from dm5 to dm3, which is the same as liters (L). So, 10.0 dm5 is equal to 10.0/1000 = 0.01 dm3 or 0.01 L. Next, we need to convert the temperature from Celsius to Kelvin by adding 273 to get 546 K. Now we can plug in the values we have into the ideal gas law: 4 atm x 0.01 L = n x 0.0821 L·atm/K·mol x 546 K Simplifying, we get: 0.04 = n x 44.8 Solving for n, we get: n = 0.04/44.8 = 0.00089 mol Finally, we can compare this value to the molar volume of a gas at standard temperature and pressure (STP), which is 22.4 L/mol. To do this, we need to convert the volume of gas we have to STP conditions. Since the temperature is already at STP (273 K), we just need to adjust the pressure. Using the ideal gas law, we can solve for the volume at STP: 1 atm x V = 0.00089 mol x 0.0821 L·atm/K·mol x 273 K Simplifying, we get: V = 0.0224 L or 22.4 dm3 Therefore, the amount of gas present is equal to 0.00089 mol, which is less than 1 mol. So the answer is 0.89 mol.
Frage 24 Bericht
If 1 litre of 2.2M sulphuric acid is poured into a bucket containing 10 litres of water and the resulting solution mixed thoroughly, the resulting sulphuric acid concentration will be
Antwortdetails
When 1 liter of 2.2M sulphuric acid is added to 10 liters of water, the total volume of the resulting solution is 11 liters. To find the resulting concentration of sulphuric acid, we need to use the equation: M1V1 = M2V2 where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume. We can plug in the values we know: M1 = 2.2M (the initial concentration of the sulphuric acid) V1 = 1L (the initial volume of the sulphuric acid) M2 = ? (the final concentration we're trying to find) V2 = 11L (the final volume of the resulting solution) Solving for M2, we get: M2 = (M1 x V1) / V2 M2 = (2.2M x 1L) / 11L M2 = 0.2M Therefore, the resulting sulphuric acid concentration is 0.2M or 0.2 moles per liter. In summary, when 1 liter of 2.2M sulphuric acid is mixed with 10 liters of water, the resulting sulphuric acid concentration is diluted to 0.2M. This is because the total volume of the resulting solution is greater than the initial volume of the sulphuric acid, which leads to a decrease in concentration.
Frage 25 Bericht
The situation obtained when a perfect gas expands into a vacuum is
Frage 26 Bericht
The boiling of fat and aqueous caustic soda is referred to as
Antwortdetails
The boiling of fat and aqueous caustic soda is referred to as saponification. Saponification is the process of converting fat into soap through a reaction with an alkaline substance, such as caustic soda. The reaction results in the formation of soap (a salt of a fatty acid) and glycerol. This process is important in the manufacture of soap, as it allows the fat to be converted into a useful cleaning product.
Frage 27 Bericht
A quantity of electricity liberates 3.6g of Silver from its salt. What mass of aluminium Will be liberated from its salt by the same quantity of electricity? [Al = 27, Ag = 108].
Antwortdetails
The amount of substance liberated at an electrode during electrolysis is directly proportional to the quantity of electricity passed through the solution. This is known as Faraday's laws of electrolysis. The key to solving this problem is to recognize that the same quantity of electricity is used to liberate both silver and aluminum from their respective salts. We can use the ratio of their molar masses to determine the mass of aluminum liberated. The molar mass of silver (Ag) is 108 g/mol, while the molar mass of aluminum (Al) is 27 g/mol. This means that it takes four times as many moles of aluminum to make the same mass as one mole of silver. Since the same quantity of electricity liberates 3.6g of silver from its salt, it will liberate four times as many moles of aluminum. Therefore, the mass of aluminum liberated is: (4 moles of Al) x (27 g/mol) = 108 g So, the mass of aluminum liberated is 0.108 g, or 0.1 g to one significant figure. Therefore, the answer is option D: 0.3g.
Frage 28 Bericht
The presence of ammonia gas in a desiccator can exclusively be removed by
Antwortdetails
Frage 29 Bericht
The refreshing and characteristic taste of soda water and other soft drinks is as a result of the presence of
Frage 30 Bericht
What volume of oxygen will remain after reacting 8cm of hydrogen gas with 20cm of oxygen gas
Antwortdetails
Frage 31 Bericht
A correct electrochemical series can be obtained from Na, Ca, Al, Mg, Zn, Fe, Pb, H, Cu, Hg, Ag, Au by interchanging
Antwortdetails
Frage 32 Bericht
The type of bonding in [Cu(NH3 )4 ]2+ is
Antwortdetails
The type of bonding in [Cu(NH3)4]2+ is coordinate bonding. Coordinate bonding (also known as dative covalent bonding) is a type of covalent bonding where one atom (in this case, the nitrogen atom in NH3) donates a pair of electrons to another atom or ion (in this case, the copper ion Cu2+). The donating atom is called the ligand, and the receiving atom or ion is called the central metal ion. In [Cu(NH3)4]2+, each ammonia molecule (NH3) donates a lone pair of electrons on the nitrogen atom to the copper ion, forming four coordinate bonds between the ligands and the central copper ion. The presence of coordinate bonds is indicated by the use of square brackets around the coordination compound, and the charge on the compound is indicated by the superscript outside the brackets. Therefore, the answer is option A: coordinate.
Frage 33 Bericht
To what temperature must a gas at 273k be heated in order to double both its volume and pressure?
Frage 35 Bericht
Which of the following produces relatively few ions in solution?
Antwortdetails
The correct answer is AI(OH)3. When ionic compounds dissolve in water, they dissociate into their constituent ions, producing charged particles in solution. The more ions a compound produces, the more conductive it is in solution. AI(OH)3, also known as aluminum hydroxide, produces relatively few ions in solution because it is a weak base. When AI(OH)3 dissolves in water, it releases a small amount of Al3+ and OH- ions. In contrast, NaOH, KOH, and Ca(OH)2 are strong bases that dissociate more completely in water and produce more ions in solution. NaOH and KOH produce one hydroxide ion for every sodium or potassium ion, while Ca(OH)2 produces two hydroxide ions for every calcium ion. Therefore, of the options listed, AI(OH)3 produces relatively few ions in solution.
Frage 36 Bericht
Sieving is a technique used to separate mixtures containing solid particles of
Antwortdetails
Sieving is a technique used to separate mixtures containing solid particles of different sizes. A sieve is a mesh or perforated screen that is used to separate particles based on their size. The mixture is poured onto the sieve, and the particles that are too large to pass through the holes are left on top, while the smaller particles fall through the holes and are collected below. This process allows for the separation of the different-sized particles, making it easier to purify or further process the mixture.
Frage 37 Bericht
The figure above shows the electrolysis of molten sodium chloride. Z is the
Antwortdetails
The figure shows the electrolysis of molten sodium chloride. During electrolysis, an electric current is passed through a molten or dissolved ionic compound to separate the ions. The positive ions move towards the negative electrode (cathode) and the negative ions move towards the positive electrode (anode). In the figure, the electrode connected to the positive terminal of the battery is the anode and the electrode connected to the negative terminal is the cathode. At the anode, the negatively charged chloride ions (Cl-) lose electrons and are oxidized to form chlorine gas (Cl2). At the cathode, the positively charged sodium ions (Na+) gain electrons and are reduced to form liquid sodium metal (Na). Therefore, the answer is (a) anode where the Cl- ions are oxidized. Z is the anode in the figure.
Frage 38 Bericht
When large hydrocarbon molecules are heated at high temperature in the presence of a catalyst to give smaller molecules, the process is known as
Antwortdetails
The process of breaking down large hydrocarbon molecules into smaller molecules by heating them at high temperatures in the presence of a catalyst is known as cracking. This process is used to convert heavy, high-molecular-weight hydrocarbon molecules into lighter, more valuable products such as gasoline and diesel fuel. The high temperatures cause the large molecules to break apart into smaller ones, and the catalyst helps speed up the reaction. This process is important in the petrochemical industry, as it allows for the production of a wider range of useful products from crude oil.
Frage 39 Bericht
The hydrogen ion concentration of a sample of orange juice is 2.0 X 10−11 moldm−3 . What is its pOH ? [log102 = 0.3010]
Frage 40 Bericht
H2 S(g) + Cl2(g) → 2HCl(g) + S(g) In the reaction above, the substance that is reduced is
Antwortdetails
Möchten Sie mit dieser Aktion fortfahren?